Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhân từng hạng tử của giả thiết với 2 rồi cộng và trừ từng cái một là ra còn gì nx
Trình bày dài lắm
Ta có : \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
=> \(\frac{a+2b+c}{x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}\)
=> \(\frac{a+2b+c}{x}=\frac{2\left(2a+b-c\right)}{2y}=\frac{4a-4b+c}{z}=\frac{a}{x+2y+z}\)(1)
=> \(\frac{2\left(a+2b+c\right)}{2x}=\frac{2a+b-c}{y}=\frac{4a+4b+c}{z}=\frac{b}{2x+y-z}\)(2)
=> \(\frac{4\left(a+2b+c\right)}{4x}=\frac{4\left(2a+b-c\right)}{4y}=\frac{4a-4b+c}{z}=\frac{c}{4x-4y+z}\)(3)
Từ (1);(2);(3) suy ra \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4b+z}\)
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{9a}\)( 1 )
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{2x+y-z}{9b}\)( 2 )
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{4x-4y+z}{9c}\)( 3 )
Từ ( 1 ) , ( 2 ) và ( 3 )
\(\frac{x+2y-z}{9a}=\frac{2x+y-z}{9b}=\frac{4x-4y+z}{9c}\)hay \(\frac{9a}{x+2y-z}=\frac{9b}{2x+y-z}=\frac{9c}{4x-4y+z}\)
\(\Rightarrow\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
Ta có: \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{2x}{2a+4b+2c}=\frac{2y}{4a+2b-2c}\)
\(=\frac{4x}{4a+8b+4c}=\frac{4y}{8a+4b-4c}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{a+2b+c}=\frac{2y}{4a+2b-2c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{\left(a+2b+c\right)+\left(4a+2b-2c\right)+\left(4a-4b+c\right)}=\frac{x+2y+z}{9a}\left(1\right)\)
\(\frac{2x}{2a+4b+2c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{2x+y-z}{\left(2a+4b+2c\right)+\left(2a+b-c\right)-\left(4a-4b+c\right)}=\frac{2x+y-z}{9b}\left(2\right)\)
\(\frac{4x}{4a+8b+4c}=\frac{4y}{8a+4b-4c}=\frac{z}{4a-4b+c}=\frac{4x-4y+z}{\left(4a+8b+4c\right)-\left(8a+4b-4c\right)+\left(4a-4b+c\right)}=\frac{4x-4y+z}{9c}\left(2\right)\)
Từ (1); (2); (3) \(\Rightarrow\frac{x+2y+z}{9a}=\frac{2x+y-z}{9b}=\frac{4x-4y+z}{9c}\)
\(\Rightarrow\frac{x+2y+z}{a}=\frac{2x+y-z}{b}=\frac{4x-4y+z}{c}\)
\(\Rightarrow\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\left(đpcm\right)\)