Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+c+b};\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
=> M>1 (1)
Lại có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{a+b}{a+b+c};\frac{c}{a+c}< \frac{c+b}{a+b+c}\)
\(\Rightarrow M< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}=2\)
=> M<2 (2)
Từ (1)(2) => 1<M<2 => M không là số nguyên (đpcm)
a) sai đề rồi bn
b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a+b}{c+d}\right)^3\)(tính chất dãy tỉ số bằng nhau) (1)
\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^3-b^3}{c^3-d^3}\)(2)
từ (1) và (2)\(\Rightarrow\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\left(đpcm\right)\)
Ta có: \(\frac{a}{m}< \frac{b}{m}\)
Mà m>0 => a<b
Do đó: \(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
hay \(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)
ta có: a/b = c/d = k
từ a/b=k -->a=bk
từ c/d=k --> c=dk
a+b/a-b = bk+b/bk-b= b(k+1)/ b (k-1)=k+1/k-1
c+d/c-d= dk +d / dk-d = d(k+1)/d(k-1)= k+1/ k-1
--> a+b/a-b = c+d/c-d
hơi khó nhìn cố nha
Ta có :
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
<=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c.\)
\(\Rightarrow M=\frac{a^{2013}b^2c}{c^{2016}}=\frac{c^{2013+2}}{c^{2016}}=\frac{c^{2016}}{c^{2016}}=1\)
a/b=b/c=c/a
Áp dụng t/c dãy tỉ số bằng nhau ta có :
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a/b =b/c=c/a=1 suy ra a=b=c
suy ra M =1
#)Giải :
Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)
Lại có : \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(2\right)\)
\(\Rightarrowđpcm\)
Câu hỏi của Ngô Văn Nam - Toán lớp 7 - Học toán với OnlineMath
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\left(1\right)\)
\(M< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+a}{a+b+c}=2\)\(\left(2\right)\)
từ (1),(2) suy ra đpcm