Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đó sẽ là hình thang cân DECB.
Trong bài tập này có 2 điều bạn phải làm rõ được:
DE // BC và DC = BE.
Chúng ta sẽ cùng làm từng điều một:
- DE // BC:
Giả thiết cho tam giác ABC cân A => AC = AB.
- Xét 2 tam giác ADE và ACB bằng nhau theo trường hợp cgc
=> góc ADE = ACB => DE // BC.
học tốt nhé cậu
1,
A D C B 1 2 E 6 1 2
a, Áp dụng định lý Pi-ta-go vào \(\Delta ABC\)
\(BC=\sqrt{8^2+6^2}\)
\(=10cm\)
b, Xét chung \(\Delta BEC\)và \(\Delta DEC\)
\(EC\)chung
\(BC=CD\hept{\begin{cases}\Delta BEC\\\Delta DEC\end{cases}}\)
\(G=\widehat{G}\)
\(\Delta ABC\)và \(\Delta ACD\)có \(\widehat{A_1}=\widehat{A_2};AB=AD;AC\)chung
\(\Rightarrow\Delta ABC=\Delta ACD\Rightarrow BC=CD;\widehat{G}=\widehat{G_2}\)
P/s: Dựa vào đây mà làm
a: Xét ΔAED và ΔACB có
\(\dfrac{AE}{AC}=\dfrac{AD}{AB}\)
\(\widehat{EAD}=\widehat{CAB}\)
Do đó: ΔAED\(\sim\)ΔACB
Suy ra: \(\widehat{AED}=\widehat{ACB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà EC=BD
nên BEDC là hình thang cân