Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 1⋅2⋅3+2⋅4⋅6+3⋅6⋅9+4⋅8⋅12
= 6+2⋅4⋅6+3⋅6⋅9+4⋅8⋅12
= 6+48+3⋅6⋅9+4⋅8⋅12
= 6+48+162+4⋅8⋅12
= 6+48+162+384
= 600
b . Ta có \(A=\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}.\)
Ta có : \(\frac{2010}{2011+2012}< \frac{2010}{2011}\) và \(\frac{2011}{2011+2012}< \frac{2011}{2012}\)
=> \(\frac{2010+2011}{2011+2012}< \frac{2010}{2011}+\frac{2011}{2012}\)
=> A < B
a) \(1+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
\(=\frac{16}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}\)
\(=\frac{23}{16}\)
b) \(2-\frac{1}{8}-\frac{1}{12}-\frac{1}{16}\)
\(=\frac{96}{48}-\frac{6}{48}-\frac{4}{48}-\frac{3}{48}\)
\(=\frac{83}{48}\)
c) \(\frac{4}{99}\cdot\frac{18}{5}\div\frac{12}{11}+\frac{3}{5}\)
\(=\frac{4\cdot18\cdot11}{99\cdot5\cdot12}+\frac{3}{5}\)
\(=\frac{4\cdot9\cdot2\cdot11}{9\cdot11\cdot5\cdot4\cdot3}+\frac{3\cdot3}{3\cdot5}\)
\(=\frac{2}{15}+\frac{9}{15}=\frac{11}{15}\)
d) \(\left(1-\frac{3}{4}\right)\left(1+\frac{1}{3}\right)\div\left(1-\frac{1}{3}\right)\)
\(=\frac{1}{4}\cdot\frac{4}{3}\div\frac{2}{3}\)
\(=\frac{1\cdot4\cdot3}{4\cdot3\cdot2}=\frac{1}{2}\)
a. Ta tính trước số bị chia: 1 + 4 + 7 + …… + 100
Dãy số gồm có: (100 – 1) : 3 + 1 = 34 (số hạng)
Ta thấy: 1 + 100 = 4 + 97 = 101 = …..
Do đó số bị chia là: 101 x 34 : 2 = 1717
Ta có: 1717 : a = 17
a = 1717 : 17
a = 101
vậy a = 101.
b.
x - 1 2 × 5 3 = 7 4 - 1 2 x - 1 2 × 5 3 = 5 4 x - 1 2 = 5 4 : 5 3 x - 1 2 = 3 4 x = 3 4 + 1 2 x = 5 4
c. 2000 2001 v à 2001 2002
Ta có: 1 - 2000 2001 = 1 2001
1 - 2001 2002 = 1 2002
Vì 1 2001 > 1 2002 nên 2000 2001 < 2001 2002
Câu 1:
\(M=\frac{2010+2011}{2011+2012}\)\(=1-\frac{2}{2011+2012}< 1\)\(M=\frac{2010+2011}{2011+2012}< \frac{2011+2012}{2011+2012}=1\)
\(N=\frac{2010}{2011}+\frac{2011}{2012}\)\(=2-\frac{1}{2011}-\frac{1}{2012}>2-1>1\)
\(\Rightarrow M< N\)\(N=\frac{2010}{2011}+\frac{2011}{2012}=2-\frac{1}{2011}-\frac{1}{2012}>2-1=1\)
\(\Rightarrow M< N\)
Câu 2:
a x b x ba = aaa
a x b x ba = a x 100 + a x 10 + a
a x b x ba = 111 a
b x ba = 111 (chia cả hai vế cho a)
Ta có: 111 = 3 x 37 = 1 x 111
Vì ba là số có 2 chữ số nên ba = 37
Vậy ab = 73
Câu 3:
Gọi vận tốc dự định đi lúc đầu là a (a > 0). Ta có:
Quãng đường đi từ A đến B với vận tốc dự định là: a x 4 (km)
Quãng đường đi từ A đến B với vận tốc thêm 14 km là: (a + 14) x 3 (km)
Mà : a x 4 = (a+14) x 3 (cùng bằng quãng đường AB)
=> a x 4 = a x 3 +42
=> a = 42 (km/h)
Quãng đường AB dài: 42 x 4 =168 (km)
Bài 1 : \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right]:5\times x< \frac{5}{6}\)
=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right]:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{1}{24}+\frac{2}{15}+\frac{3}{40}\right]:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{5}{12}:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{1}{12}\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{x}{12}< \frac{5}{6}\)
=> \(\frac{8}{12}< \frac{x}{12}< \frac{10}{12}\)
=> x = 9
Bài 2 : \(\frac{\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right]}{x}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
=> \(\frac{\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}\right]}{x}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{11\cdot12}\)
=> \(\frac{\left[1-\frac{1}{16}\right]}{x}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{11}-\frac{1}{12}\)
=> \(\frac{15}{\frac{16}{x}}=1-\frac{1}{12}\)
=> \(\frac{15}{\frac{16}{x}}=\frac{11}{12}\)
=> \(\frac{15}{16}:x=\frac{11}{12}\)
=> \(x=\frac{45}{44}\)
Bài 3 : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\times(x+1):2}=\frac{399}{400}\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\times(x+1)}=\frac{399}{400}\)
=> \(2\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)
=> \(2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)
=> \(\left[\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{399}{800}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{399}{800}\)
=> \(\frac{1}{x+1}=\frac{1}{800}\)
=> x = 799
Bài 2 :
\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\) (*)
Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}=\frac{8+4+2+1}{16}=\frac{15}{16}\) (1)
Lại có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)
\(=1\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{11}+\frac{1}{11}\right)-\frac{1}{12}\)
\(=1-\frac{1}{12}=\frac{11}{12}\) (2)
Thay (1) và (2) vào biểu thức (*) ta được :
\(\frac{15}{16}:x=\frac{11}{12}\)
\(\Leftrightarrow x=\frac{15}{16}:\frac{11}{12}\)
\(\Leftrightarrow x=\frac{45}{44}\)
Vậy : \(x=\frac{45}{44}\)
a) x + 2/3=9/11
<=> x=9/11-2/3= 5/33
b) x - 3/10=4/15
<=> x=4/15+3/10=17/30
c) X x 1/7=5/6
<=> x=5/6:1/7=35/6
d) x : 3/5=1/6
<=> x=1/6x3/5=1/10
\(a,x+\frac{2}{3}=\frac{9}{11}\)
\(x=\frac{9}{11}-\frac{2}{3}\)
\(x=\frac{5}{33}\)
\(b,x-\frac{3}{10}=\frac{4}{15}\)
\(x=\frac{4}{15}+\frac{3}{10}\)
\(x=\frac{17}{30}\)
\(c,x\cdot\frac{1}{7}=\frac{5}{6}\)
\(x=\frac{5}{6}:\frac{1}{7}\)
\(x=\frac{35}{6}\)
\(d,x:\frac{3}{5}=\frac{1}{6}\)
\(x=\frac{1}{6}\cdot\frac{3}{5}\)
\(x=\frac{1}{10}\)
. là nhân nha
\(A=\frac{1}{\left(2\times2\right)}+\frac{1}{\left(3\times3\right)}+....+\frac{1}{\left(2011\times2011\right)}\)
\(A=1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+.....+\frac{1}{2011}-\frac{1}{2011}\)
\(A=1+\frac{1}{2}\)
\(A=\frac{3}{2}\)
\(A>\frac{3}{4}\)