Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chỉ sửa chỗ :
=>5(3n+1) chia hết cho d
=>3(5n+2)
=>15n+5 chia hết cho d
=>15n +6 chia hết cho d
từ đó........
3n + 1 và 5n +2 là 2 số nguyên tố cùng nhau
Gọi d là UCLN ( 3n+1 và 5n+2)
Ta có:
3n+1 chia hết cho d
5n+2 chia hết cho d
=> 5(3n+1) chia hết cho d
=> 3(5n+2) chia hết cho d
=> 15n+ 1 chia hết cho d
=> 15n+2 chia hết cho d
=> 15n+2- 15n+1 chia hết chi d
=> 1 chia hết cho d
=> d thuộc Ư ( 1)
=> UCLN ( d) = 1
=> UCLN ( d)= UCLN ( 3n+1 và 5n+2
Nguyên tố cùng nhau
tick nhé
Đặt UCLN(n + 1 ; 3n +4) = d
n + 1 chia hết cho d
< = > 3n + 3 chia hết cho d
< = > [(3n + 4)-(3n+3)] chia hết cho d
< = > (3n + 4 - 3n -3 ) chia hết cho d
1 chia hết cho d => d= 1
Vậy n + 1 ; 3n +4 là 2 số nguyên tố cùng nhau
. a) Cho (a + 5b) ⁝ 7. Chứng tỏ rằng (10a + b) ⁝ 7
-Ta có : (a+5b) \(⋮7\)
\(\Rightarrow10.\left(a+5b\right)⋮7\)
\(\Rightarrow10a+50b⋮7\)
\(\Rightarrow\left(10a+b\right)+49b⋮7\)
\(49b⋮7\Rightarrow\left(10a+b\right)⋮7\left(đpcm\right)\)
\((10a + b)⁝7 \)
\(\implies 5(10a + b)\vdots 7\)
\(\implies 5.10a + 5b\vdots 7\)
\(\implies 50a + 5b\vdots 7\)
\(\implies 49a + a + 5b\vdots 7\)
\(\implies 49a + (a + 5b)\vdots 7\)
\(49a\vdots 7 \implies (a +5b) \vdots 7(đpcm)\)
Cám ơn bạnミ★Hoa﹏❣Anh﹏❣Đào﹏❣★彡, mong bạn giải tiếp các câu còn lại nhé.
Bài 1:
Gọi UCLN của n+1 và 3n+4 là d.
Suy ra:n+1 chia hết cho d
3n+4 chia hết cho d
Suy ra:3n+3 chia hết cho d
3n+4 chia hết cho d
Suy ra:(3n+4)-(3n+3) chia het cho d
Suy ra: 1 chia hết cho d
Vậy d=1.
VẬY 2 SỐ n+1 VÀ 3n+4 LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU>
Đặt UCLN(3n + 1 ; 5n + 2) = d
3n + 1 chia hết cho d => 15n + 5 chia hết cho d
5n + 2 chia hết cho d => 15 n + 4 chia hết cho d
Mà UCLN(15n + 4 ; 15n + 5) = 1 => d = 1
Vậy ..............................................
1)Gọi 2 số tự nhiên liên tiếp là n và n+1
Đặt ƯCLN(n,n+1)=d
Ta có: n chia hết cho d
n+1 chia hết cho d
=>n+1-n chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(n,n+1) =1
=>n và n+1 là 2 số nguyên tố cùng nhau
2)Gọi ƯCLN(2n+5,3n+7)=d
Ta có: 2n+5 chia hết cho d=>3.(2n+5) chia hết cho d=>6n+15 chia hết cho d
3n+7 chia hết cho d=>2.(3n+7) chia hết cho d=>6n+14 chia hết cho d
=>6n+15-(6n+14) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(2n+5,3n+7)=1
=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
a)
Gọi 2 số tự nhiên liên tiếp là n; n+1
Gọi ƯCLN ( n;n+1) la d
=> n chia hết cho d; n+1 chia hết cho d
=> n+1-n chia hết cho d
=> 1 chia hết cho d
=> d =1
=> ƯCLN ( n;n+1) =1
=> hai số tự nhiên liên tiếp luôn là hai số nguyên tố cùng nhau
b)
Gọi ƯCLN( 2n+5;3n+7) la d
=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d
=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d
=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d
=> 6n+15-(6n+14) chia hết cho d
=> 1 chia hết cho d
=> d= 1
=> ƯCLN( 2n+5;3n+7)=1
=>2n+5 và 3n+7 là hai số nguyên tố cùng nhau