K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2020

D2=\(8+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

D2=8+2\(\sqrt{16-\left(10+2\sqrt{5}\right)}\)

D2=8+2\(\sqrt{6-2\sqrt{5}}\)

D2=8+2\(\left(\sqrt{5}-1\right)\)

D2=6-2\(\sqrt{5}\)

D2=\(\left(\sqrt{5}+1\right)^2\)

D=\(\sqrt{5}+1\)

Co j k mik nha

23 tháng 9 2020

Vẽ phân giác BD, ta có: \(\frac{DA}{DC}=\frac{BA}{BC}\)

\(\Rightarrow\frac{DA}{AB}=\frac{DC}{BC}=\frac{DA+DC}{AB+BC}=\frac{AC}{AB+BC}\left(1\right)\)

Mặt khác \(\Delta ABD\)vuông tại A, ta có:

\(\tan\widehat{ABD}=\tan\frac{\widehat{ABC}}{2}=\frac{DA}{AB}\left(2\right)\)

Từ (1) và (2) =>đpcm

23 tháng 9 2020

Một liên đội có khoảng 200 đến 300 đội viên.Mỗi lần xếp hàng 3,hàng 5 ,hàng 7 thì vừa đủ. Tính số đội viên

21 tháng 9 2020

Ta có: \(x^4+16x^2+32=0\Leftrightarrow\left(x^2-8\right)^2-32=0\left(1\right)\)

Với \(x=\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)\(\Leftrightarrow x=\sqrt{3}\sqrt{2-\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)

\(\Rightarrow x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}\sqrt{2-\sqrt{3}}\)

Thay x vào vế phải của (1) ta được:

\(\left(x^2-8\right)^2-32=\left(8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}\sqrt{2-\sqrt{3}}-8\right)^2-32\)

\(=4\left(2+\sqrt{3}\right)+4\sqrt{3}+12\left(2-\sqrt{3}\right)-32\)

\(=8+4\sqrt{3}+8\sqrt{3}+24-12\sqrt{3}-32=0\)= vế phải

Vậy \(x-\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)là 1 nghiệm của phương trình đã cho(đpcm)

19 tháng 10 2020

 \(^6\sqrt{2019} = b, ^6\sqrt{2020} = a \\ Then, A = a^3 - b^3; B = a^2 -b^2\\ \Rightarrow A > B \)

21 tháng 9 2020

\(G=\sqrt{8\sqrt{3}-4\sqrt{6}-4\sqrt{2}+18}-\sqrt{14-4\sqrt{6}}\)

\(G=\sqrt{12+4+2-4\sqrt{6}+8\sqrt{3}-4\sqrt{2}}-\sqrt{12+4-4\sqrt{6}}\)

\(G=\left(2\sqrt{3}+2-\sqrt{2}\right)-\left(2\sqrt{3}-2\right)=4-\sqrt{2}\)