Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nhân a+b+c và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)lại với nhau rồi trừ 1 ở mỗi vế, phân tích mẫu ra sẽ đc(a+b)(b+c)(c+a)=0
ĐKXĐ : a;b;c \(\ne0\)
Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2000}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}-\dfrac{1}{a}\)
\(\Leftrightarrow\dfrac{b+c}{bc}=\dfrac{-\left(b+c\right)}{a\left(a+b+c\right)}\)
\(\Leftrightarrow\left(b+c\right)\left(\dfrac{1}{bc}+\dfrac{1}{a\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\left(b+c\right).\dfrac{a\left(a+b+c\right)+bc}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(b+c\right).\dfrac{a^2+ab+ac+bc}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\dfrac{\left(b+c\right)\left(a+b\right)\left(a+c\right)}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b+c=0\\a+b=0\\a+c=0\end{matrix}\right.\left(1\right)\)
Từ (1) kết hợp a + b + c = 2000 ta được điều phải chứng minh
2) \(\sum\dfrac{x}{x^2-yz+2013}=\sum\dfrac{x^2}{x^3-xyz+2013x}\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\dfrac{1}{x+y+z}\left(đpcm\right)\)
bn dua vao day nay :https://olm.vn/hoi-dap/detail/105816822455.html
\(\frac{1}{a^2+b^2+2}+\frac{1}{c^2+b^2+2}+\frac{1}{a^2+c^2+2}\le\frac{3}{4}\)
\(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)
\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)
\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)
Cần chứng minh \(\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\frac{3}{2}\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge0\) *luôn đúng*
Bài 3:
a) \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)
\(=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a+1}\right)}\right)\)
\(=\dfrac{a-1}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}-1+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\dfrac{\sqrt{a}+1}{\sqrt{a}}:\dfrac{1}{\sqrt{a}-1}\)
\(=\dfrac{\sqrt{a}+1}{\sqrt{a}}\cdot\left(\sqrt{a}-1\right)\)
\(=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}\)
\(=\dfrac{a-1}{\sqrt{a}}\)
b) Thay \(a=3+2\sqrt{2}\) vào biểu thức A:
Ta có: \(\dfrac{3+2\sqrt{2}-1}{\sqrt{3+2\sqrt{2}}}=\dfrac{2+2\sqrt{2}}{\sqrt{\left(1+2\sqrt{2}\right)^2}}=\dfrac{2\left(1+\sqrt{2}\right)}{1+\sqrt{2}}=2\)
Vậy giá trị biểu thức A tại \(a=3+2\sqrt{2}\)
Bài 1:
Sửa đề: (theo mình là như vậy)
\(x^4-4x^2-12x-9\)
\(=x^4+x^3-x^3-x^2-3x^2-3x-9x-9\)
\(=\left(x^4+x^3\right)-\left(x^3+x^2\right)-\left(3x^2+3x\right)-\left(9x+9\right)\)
\(=x^3.\left(x+1\right)-x^2.\left(x+1\right)-3x.\left(x+1\right)-9.\left(x+1\right)\)
\(=\left(x+1\right).\left(x^3-x^2-3x-9\right)\)
\(=\left(x+1\right).\left(x^3-3x^2+2x-6x+3x-9\right)\)
\(=\left(x+1\right).\left[\left(x^3-3x^2\right)+\left(2x-6x\right)+\left(3x-9\right)\right]\)
\(=\left(x+1\right).\left[x^2.\left(x-3\right)+2x.\left(x-3\right)+3.\left(x-3\right)\right]\)
\(=\left(x+1\right).\left(x-3\right).\left(x^2+2x+3\right)\)
Chúc bạn học tốt!!!
ĐKXĐ: \(a,b,c\ne0\)
\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2013.\dfrac{1}{2013}\)
\(\Leftrightarrow1+1+1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}=1\)
\(\Leftrightarrow\dfrac{a^2c+a^2b+b^2c+ab^2+bc^2+ac^2+2abc}{abc}=0\)
\(\Leftrightarrow a^2c+a^2b+b^2c+ab^2+bc^2+ac^2+2abc=0\)
\(\Leftrightarrow ac\left(a+b\right)+ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
Mà \(a+b+c=2013\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2013\\b=2013\\c=2013\end{matrix}\right.\)(đpcm)