Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)+8\)
\(=3x^2+15x-3x^2+3x-18x+18+8\)
\(=18+8\)
\(=26\)
\(\Rightarrow\) Biểu thức không phụ thuộc vào biến
đpcm
a) 3x( x + 5 ) - ( 3x + 18 )( x - 1 ) + 8
= 3x2 + 15x - ( 3x2 + 15x - 18 ) + 8
= 3x2 + 15x - 3x2 - 15x + 18 + 8
= 26 ( đpcm )
b) ( 2x + 6 )( 4x2 - 12x + 36 ) - 8x3 + 5
= [ ( 2x )3 + 63 ] - 8x3 + 5
= 8x3 + 216 - 8x3 + 5
= 221
Ta có:
\(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=\left[3x\left(2x+11\right)-5\left(2x+11\right)\right]-\left[2x\left(3x+7\right)+3\left(3x+7\right)\right]\)
\(=\left[\left(6x^2+33x\right)-\left(10x+55\right)\right]-\left[\left(6x^2+14x\right)+\left(9x+21\right)\right]\)
\(=\left[6x^2+23x-55\right]-\left[6x^2+23x+21\right]\)
\(=-55-21=-76\)
Vậy biểu thức A không phụ thuộc vào biến x, y.
( 2x - y )3 - 2( 4x3 + 1 ) + 6xy + y3
= 8x3 - 12x2y + 6xy2 - y3 - 8x3 - 2 + 6xy + y3
= 6xy2 + 6xy - 12x2y - 2
=> có phụ thuộc vào biến
( 1/3 + 2x )( 4x2 - 2/3x + 1/9 ) - ( 8x3 - 1/27 )
= [ ( 1/3 )3 + ( 2x )3 ] - 8x3 + 1/27
= 1/27 + 8x3 - 8x3 + 1/27
= 2/27
Vậy giá trị của biểu thức không phụ thuộc vào biến ( đpcm )
b) 5(3xn + 1 - yn - 1) + 3(xn + 1 + 5yn - 1) - 5(3xn + 1 + 2yn - 1) - (3n + 1 - 10)
= 15xn + 1 - 5yn - 1 + 3xn + 1 + 15yn - 1 - 15xn + 1 - 10yn - 1 - 3n + 1 - 10
= (15xn + 1 + 3xn + 1 - 15xn + 1 - 3n + 1) + (15yn - 1 - 5yn - 1 - 10yn - 1) - 10
= xn + 1(15 + 3 - 15 - 3) + yn - 1(15 - 5 - 10) - 10
= 0 - 0 - 10 = -10 (đpcm)
a) h(x) = (x + 1)(x2 - x + 1) - (x - 1)(x2 + x + 1)
= x3 - x2 + x + x2 - x + 1 - x3 - x2 - x + x2 + x + 1
= (x3 - x3) - (x2 - x2 + x2 - x2) + (x - x - x + x) + (1 + 1)
= 1 + 1
= 2 (đpcm)
a) h(x) = ( x + 1 )( x2 - x + 1 ) - ( x - 1 )( x2 + x + 1 )
= ( x3 + 13 ) - ( x3 - 13 )
= x3 + 1 - x3 + 1
= 2
Vậy h(x) không phụ thuộc vào biến ( đpcm )
b) 5( 3xn+1 - yn-1 ) + 3( xn+1 + 5yn-1 ) - 5( 3xn+1 + 2yn-1 ) - ( 3xn+1 - 10 )
= 15xn+1 - 5yn-1 + 3xn+1 + 15yn-1 - 15xn+1 - 10yn-1 - 3xn+1 + 10
= ( 15xn+1 + 3xn+1 - 15xn+1 - 3xn+1 ) + ( -5yn-1 + 15yn-1 - 10yn-1 ) + 10
= 0 + 0 + 10 = 10
Vậy giá trị của biểu thức không phụ thuộc vào biến ( đpcm )
1. ( 2x + y )( 4x2 - 2xy + y2 ) - 8x3 - y3 - 16
= [ ( 2x )3 + y3 ] - 8x3 - y3 - 16
= 8x3 + y3 - 8x3 - y3 - 16
= -16 ( đpcm )
2. ( 3x + 2y )2 + ( 3x + 2y )2 - 18x2 - 8y2 + 3
= 2( 3x + 2y )2 - 18x2 - 8y2 + 3
= 2( 9x2 + 12xy + 4y2 ) - 18x2 - 8y2 + 3
= 18x2 + 24xy + 8y2 - 18x2 - 8y2 + 3
= 24xy + 3 ( có phụ thuộc vào biến )
3. ( -x - 3 )3 + ( x + 9 )( x2 + 27 ) + 19
= -x3 - 9x2 - 27x - 27 + x3 + 9x2 + 27x + 243 + 19
= -27 + 243 + 19 = 235 ( đpcm )
4. ( x - 2 )3 - x( x + 1 )( x - 1 ) + 13( x - 4 )
= x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 13x - 52
= x3 - 6x2 + 12x - 8 - x3 + x + 13x - 52
= -6x2 + 26x - 60 ( có phụ thuộc vào biến )
6) c) x3 - x2 + x = 1
<=> x3 - x2 + x - 1 = 0
<=> (x3 - x2) + (x - 1) = 0
<=> x2 (x - 1) + (x - 1) = 0
<=> (x - 1) (x2 + 1) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
* x - 1 = 0 => x = 1
* x2 + 1 = 0 => x2 = -1 => x = -1
Vậy x = 1 hoặc x = -1
Bài 5:
a) Đặt \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{8}\)
b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)
=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)
\(=\left(7x+6-5+6x\right)^2\)
\(=\left(13x+1\right)^2\)
Theo hằng đẳng thức : a^ 3 – b^3 = ( a –b) ( a^2 + ab + b^2)
B= ( x + 1) ^3 – ( x -1) ^3
<=> B = ( x +1 – x +1) [( x+1)^2 + (x+1) (x-1) + (x-1)^2]
<=>B = 2 .( x^2 +2x +1 + x^2 -1 + x^2 -2x +1)
<=> B = 2 ( 3x^2 + 1)
<=> B = 6x^2 +2
=> có phụ thuộc vào biến
\(B=\left(2x+6\right)\left(4x^2-12x+36\right)-8x^2+10\)
\(=\left[\left(2x\right)^3+6^3\right]-8x^2+10\)
\(=\left[8x^3+216\right]-8x^2+10\)
\(=8x^3+216-8x^2+10\)
\(=\left(8x^3-8x^2\right)+\left(216+10\right)\)
\(=8x^2\left(x-1\right)+226\)
mà \(8x^2\left(x-1\right)+226\ne x\)
\(\Rightarrow\)biểu thức không phụ thuộc vào biến x
Sửa đề \(8x^2\) thành \(8x^3\)
\(B=8x^3-24x^2+72x+24x^2-72x+216-8x^3+10\)
\(=226\)
Vậy B không phụ thuộc vào biến x