K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Tìm số hạng thứ 4 lập thành 1 tỉ lệ thức (TLT) với 3 số hạng sau: 4;25;100 Bài 2: Cho TLT \(\frac{3x+5y}{x-2y}=\frac{1}{4}.\)Tính tỉ số \(\frac{x}{y}\)  Bài 3: Cho TLT \(\frac{a-3}{a+3}=\frac{b-6}{b+6}\)   với a \(\ne\) 3; b  \(\ne\)–6. CMR: \(\frac{a}{b}=\frac{1}{2}\)Bài 4: Các số a,b,c phải có thêm điều kiện gì để có TLT:  \(\frac{a}{b}=\frac{a+c}{b+c}\)với b \(\ne\)0; b + c \(\ne\)0.Bài 5: Cho...
Đọc tiếp

Bài 1: Tìm số hạng thứ 4 lập thành 1 tỉ lệ thức (TLT) với 3 số hạng sau: 4;25;100 

Bài 2: Cho TLT \(\frac{3x+5y}{x-2y}=\frac{1}{4}.\)Tính tỉ số \(\frac{x}{y}\)  

Bài 3: Cho TLT \(\frac{a-3}{a+3}=\frac{b-6}{b+6}\)   với a \(\ne\) 3; b  \(\ne\)–6. CMR: \(\frac{a}{b}=\frac{1}{2}\)

Bài 4: Các số a,b,c phải có thêm điều kiện gì để có TLT: 

 \(\frac{a}{b}=\frac{a+c}{b+c}\)với b \(\ne\)0; b + c \(\ne\)0.

Bài 5: Cho TLT \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)  với a,b,c \(\ne\)0; a \(\ne\)c. CMR: \(\frac{ab}{bc}=\frac{b}{c}\)

Bài 6: Tìm các số x,y,z biết:

a, \(\frac{x}{y}=\frac{8}{11};\frac{y}{z}=\frac{11}{7}\)   và x + y - 10z = – 102

b, 9x = 5y = 15z và –x + y - z = 11

c, \(\frac{3}{7}x=\frac{8}{13}y=\frac{6}{19}z\) và 2x - y - z = – 6

Bài 8: Cho TLT . Chứng minh:

a, \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)            b, \(\frac{a-b}{c-d}=\frac{2a-3b}{2c-3d}\)                     c, \(\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

2
11 tháng 10 2018

2. \(\frac{\left(3X+5Y\right)}{X-2Y}=\frac{1}{4}=>4\left(3X+5Y\right)=X-2Y\\ 12X+20Y=X-2Y\\ X-12X=2Y-20Y\\ -11X=-18Y\\ =>\frac{X}{Y}=-\frac{18}{-11}=\frac{18}{11}\)

11 tháng 10 2018

Bài 1. 4/25 = 100/x => x = 25.100/4 = 2500/4 = 625

Bài 3. (a-3)/(a+3) = (b-6)/(b+6)

=> (a-3)(b+6) = (a+3)(b-6)

=> ab + 6a -3b -18 = ab - 6a + 3b -18

=> 12a = 6b

=> a/b = 6/12 = 1/2

5 tháng 11 2019

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{b}{a}=\frac{d}{c}\)

\(\Rightarrow\frac{b}{a}+1=\frac{d}{c}+1\)

\(\Rightarrow\frac{b}{a}+\frac{a}{a}=\frac{d}{c}+\frac{c}{c}.\)

\(\Rightarrow\frac{b+a}{a}=\frac{d+c}{c}\)

\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\left(đpcm\right).\)

Chúc bạn học tốt!

5 tháng 11 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) (k\(\in\)N*)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Thay vào ta có:

\(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\)

\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\)

\(\Rightarrow\)\(\frac{a}{a+b}=\frac{c}{c+d}\)

Vậy \(\frac{a}{a+b}=\frac{c}{c+d}\)(điều phải chứng minh)

Hok tốt nha!!!vui

15 tháng 7 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

a) Khi đó, ta có:

 +) \(\frac{bk}{b}=k\)

+) \(\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)

=> \(\frac{a}{b}=\frac{a+c}{b+d}\)

b) Ta có:

 +) \(\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\)

 +) \(\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\)

=> \(\frac{a-b}{b}=\frac{c-d}{d}\)

15 tháng 7 2019

c) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Do đó \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\)(1)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)(2)

Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(=k^2\right)\left(đpcm\right)\)

14 tháng 11 2016

Đặt Bằng a = bk 

c = dk Rồi thay vào biểu thức nha bạn

14 tháng 11 2016

thank you

2 tháng 7 2016

Ta có : \(\frac{2a}{3}=\frac{b}{2}=\frac{c}{-4}=\frac{d}{5}\)

\(\Rightarrow\frac{a}{\frac{3}{2}}=\frac{b}{2}=\frac{c}{-4}=\frac{d}{5}=\frac{3a}{\frac{9}{2}}=\frac{2b}{4}=\frac{4c}{-16}=\frac{3a-2b+4c-d}{\frac{9}{2}-4+\left(-16\right)-5}=\frac{2}{-20,5}\)

\(\Rightarrow a=-\frac{6}{41};b=-\frac{8}{41};c=82;d=-102,5\)

Khi đó dễ dàng tính được a + b - 2c - 3d 

25 tháng 10 2019

Có: \(\frac{a+c}{b+d}=\frac{2a-c}{2b-d}\)

\(\Leftrightarrow\left(a+c\right)\left(2b-d\right)=\left(b+d\right)\left(2a-c\right)\)

\(\Leftrightarrow2ab-ad+2bc-cd=2ab-bc+2ad-cd\)

\(\Leftrightarrow bc=ad\)

\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

25 tháng 10 2019

Ta có :

\(\frac{a+c}{b+d}=\frac{2a-c}{2b-d}\)

=> ( a + c )( 2b - d) = ( b + d)( 2a - c)

=> 2ab - ad + 2bc - cd = 2ab - bc + 2ad - cd

=> ( 2ab - 2ab ) + ( 2bc + bc ) = ( 2ad + ad ) + ( - cd + cd )

=> 3bc = 2ad

=> bc = ad

=> \(\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

16 tháng 1 2020

bài 1 sai đề ko bạn

16 tháng 1 2020

đề nào và mình ghi sai thứ tự bài