Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}=3\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)
\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)=3\left(\frac{1}{20}-\frac{1}{80}\right)=3.\frac{3}{80}=\frac{9}{80}< 1\)
=\(3\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)\)
\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\right)\)\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=3\left(\frac{4}{80}-\frac{1}{80}\right)\)
\(=3.\frac{3}{80}\)
\(=\frac{9}{80}\)
Ta có
\(A=\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}\)
\(A=3^2\left(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\right)\)
\(A=3^2\cdot\frac{1}{3}\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(A=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(A=3\cdot\frac{3}{80}=\frac{9}{80}< 1\left(9< 80\right)\)
\(A=\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}\)
\(\frac{A}{3}=\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\)
\(\frac{A}{3}=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\)
\(\frac{A}{3}=\frac{1}{20}-\frac{1}{80}\)
\(\frac{A}{3}=\frac{3}{80}\)
\(A=\frac{3}{80}.3=\frac{9}{80}< 1\)
Đặt A=32/20.23+32/23.26+....................+32/77.80
A=3(3/20.23+3/23.26+.........+3/77.80)
A=3(1/20-1/23+1/23-1/26+.+1/77-1/80)
A=3(1/20-1/80)
A=3.3/80
A=9/80 Mà A=9/80<1 =>A<1 (đpcm)
\(4S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2019}{4^{2018}}\)
=> \(3S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2019}{2^{2018}}-\frac{1}{4}-\frac{2}{4^2}-\frac{3}{4^3}-...-\frac{2019}{4^{2019}}\)
=>3S=\(1+\frac{1}{4}+\frac{1}{4^2}+..+\frac{1}{2^{2018}}-\frac{2019}{4^{2019}}\)
còn lại tự giải nhé
\(\left(\frac{2}{3}\right)^{x+2}=\left(\frac{4}{9}\right)^4\)
\(\left(\frac{2}{3}\right)^{x+2}=\left[\left(\frac{2}{3}\right)^2\right]^4\)
\(\left(\frac{2}{3}\right)^{x+2}=\left(\frac{2}{3}\right)^8\)
\(\Rightarrow x+2=8\)
Vậy \(x=6\)
\(\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}<\frac{1}{8}\)
\(=3\left(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\right)\)
\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=3.\frac{3}{80}=\frac{9}{80}\)
\(\Rightarrow\frac{9}{80}=\frac{1}{8}\)
\(3\left(\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+....+\frac{3}{77\cdot80}\right)\)
\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+.....+\frac{1}{77}-\frac{1}{80}\right)\)
\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=\frac{3}{20}-\frac{3}{80}\)
\(< 1\)