K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2020

Gọi dạng tổng quát của mọi số tự nhiên là b \(\left(b\inℕ\right)\)

Ta có: \(b^3-b=b\left(b^2-1\right)=b\left(b+1\right)\left(b-1\right)\)

Tích 3 số nguyên liên tiếp có ít nhất một số chẵn và một số chia hết cho 3 nên chia hết cho 6 => \(b^3-b⋮6\)

=> \(b^3-b=-6c\left(c\inℤ\right)\Rightarrow b=b^3+6c\)

Vậy mọi số tự nhiên đều được viết dưới dạng b3 + 6c trong đó b và c là các số nguyên.

11 tháng 10 2020

Ta có: \(b^3+6c=b.b.b+\left(c+c+c+c+c+c\right)\)

Với \(b>c\Rightarrow c=\frac{1}{2}b\)

Với \(b< c\Rightarrow b=\frac{1}{2}c\)

- Không thể xảy ra trường hợp b=c

=> đpcm

1 tháng 11 2019

Ta có:

\(^{b^3}\)\(^{6c}\)

= b x b x b + ( c + c + c + c + c + c )

Trong trường hợp b > c => c = \(\frac{1}{2}\)b

Trong trường hợp b < c => b = \(\frac{1}{2}\)c

Không thể có trường hợp b = c

Vậy suy ra mọi số tự nhiên đều có thể viết viết dưới dạng \(^{b^3}\)+  6c mà b,c thuộc Z

22 tháng 3 2020

\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=8.\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

.....

\(=\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(=3^{128}-1\)

\(\Rightarrow A=\frac{3^{128}-1}{2}\)

Giả sử:\(x=a^2+b^2;y=c^2+d^2\)

Ta có:\(xy=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\)

\(=\left[\left(ac\right)^2+2acbd+\left(bd\right)^2\right]+\left[\left(ad\right)^2-2adbc+\left(bc\right)^2\right]=\left(ac+bd\right)^2+\left(ad-bc\right)^2\left(đpcm\right)\)

6 tháng 8 2020

Giả sử hai số nguyên đó là m,n.

Theo gt: m=a2+b2, n=c2+d2 (a,b,c,d thuộc Z)

Ta có:

 \(mn=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=\left(a^2d^2+b^2c^2+2abcd\right)+\left(a^2c^2+b^2d^2-2abcd\right)\)

\(=\left(ad+bc\right)^2+\left(ac-bd\right)^2\)(đpcm)

12 tháng 9 2019

Tớ cx chơi cho tham gia nha/////

12 tháng 9 2019

nma ai đó giải hộ tớ bài kia đi đã =))) Vụ chạy bo tính sau nhaaa :<<< 

2A = (3+1)(3-1)(3^2+1)(3^4+1)...(3^64+1)

2A= (3^2-1)(3^2+1)(3^4+1)...(3^64+1)

Cứ tiếp tục như thế ta dc

2A= 3^128 -1

A = (3^128-1)/2

7 tháng 2 2020

chào bố :Đ