Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân 8 vào hai vế:
Cần chứng minh \(\left(x+y\right)\left(y+z\right)\left(z+x\right).2x.2y.2z\le\frac{64}{729}\)
Áp dụng BĐT Cô si ngược cho 6 số dương (tự c/m:v) vào VT ta có đcpm.
Đẳng thức xảy ra khi x = y = z = 1/3
Áp dụng bất đẳng thức Cauchy ngược là sao ạ? Bạn ví dụ cụ thể với....
ÁP dụng BĐT Bu nhi a cốp xki với ba số ta đc :
\(\left(1.\text{ }\sqrt{x+y}+1\sqrt{y+z}+1.\sqrt{x+z}\right)^2\le\left(1+1+1\right)\left(\left(\sqrt{x+y}\right)^2+\left(\sqrt{y+z}\right)^2+\left(\sqrt{z+x}\right)^2\right)\)
\(\le3\left(x+y+y+z+x+z\right)=3.2.\left(x+y+z\right)=6\)
=> \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\le\sqrt{6}\) ( ĐPCM)
Thay giá trị x = y = z vô thì thấy VT > 2 nên nghi ngờ đề sai. B xem lại
Đặt \(4^x=a;4^y=b;4^z=c\left(a,b,c>0\right)\)
=> \(abc=4^{x+y+z}=1\)
Khi đó
\(VT=\sqrt{3+a}+\sqrt{3+b}+\sqrt{3+c}\)
\(\ge\sqrt{4\sqrt[4]{a}}+\sqrt{4\sqrt[4]{b}}+\sqrt{4\sqrt[4]{c}}\)
\(\ge3\sqrt[6]{64.\sqrt[4]{abc}}=6\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=1 => \(x=y=z=0\)
Sai đề à? x = y = 1 thì VT > 1/4
Mình cũng nghĩ là đề sai,... do cái này là tài liệu trên mạng.