K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2021

Giả sử bốn số nguyên tố đó là \(p_1,p_2,p_3,p_4\).

Khi đó các số đã cho đều viết được dưới dạng \(p_1^{a_1}p_2^{a_2}p_3^{a_3}p_4^{a_4}\) với \(a_1,a_2,a_3,a_4\) là các số tự nhiên.

Theo nguyên lí Dirichlet, tồn tại 9 số có hệ số \(a_1\) cùng tính chẵn, lẻ.

Trong 9 số này, tồn tại 5 số có hệ số \(a_2\) cùng tính chẵn, lẻ.

Trong 5 số này, tồn tại 3 số có hệ số \(a_3\) cùng tính chẵn, lẻ.

Trong 3 số này, tồn tại 2 số có hệ số \(a_4\) cùng tính chẵn, lẻ. Tích hai số này là số chính phương.

22 tháng 8 2015

Toán lớp 6Phân tích thành thừa số nguyên tố

Đinh Tuấn Việt 20/05/2015 lúc 22:51

Theo đề bài ta có: 

 a = p1. p2n $\Rightarrow$⇒ a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.

nguyên 24/05/2015 lúc 16:50

Theo đề bài ta có: 

 a = p1. p2n $$

 a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$$

 m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 0

Captain America

22 tháng 8 2015

Có 21 ước

28 tháng 8 2015

 c chia hết cho d => ca,cb chia hết cho d 
mà ab+bc+ca chia hết cho d 
=> ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau) 
vậy: giả thiết đưa ra là sai 
kết luận: abc và ab+bc+ca nguyên tố cùng nhau

10 tháng 9 2023

Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99] 

Khoảng cách của từng số hạng là 3

Số số hạng là: (99-12):3+1=30(số)

Vậy có 30 số có 2 chữ số chia hết cho 3

Bài 1: (1,5 điểm) Tìm xa) 5x = 125;                b) 32x = 81;c) 52x-3 – 2.52 = 52.3;Bài 2: (1,5 điểm)Cho a là số nguyên. Chứng minh rằng: |a| < 5 ↔ - 5 < a < 5Bài 3: (1,5 điểm)Cho a là một số nguyên. Chứng minh rằng:a. Nếu a dương thì số liền sau a cũng dương.b. Nếu a âm thì số liền trước a cũng âm.c. Có thể kết luận gì về số liền trước của một số dương và số liền sau của một số âm?Bài...
Đọc tiếp

Bài 1: (1,5 điểm) Tìm x

a) 5x = 125;                b) 32x = 81;

c) 52x-3 – 2.52 = 52.3;

Bài 2: (1,5 điểm)

Cho a là số nguyên. Chứng minh rằng: |a| < 5 ↔ - 5 < a < 5

Bài 3: (1,5 điểm)

Cho a là một số nguyên. Chứng minh rằng:

a. Nếu a dương thì số liền sau a cũng dương.

b. Nếu a âm thì số liền trước a cũng âm.

c. Có thể kết luận gì về số liền trước của một số dương và số liền sau của một số âm?

Bài 4: (2 điểm)

Cho 31 số nguyên trong đó tổng của 5 số bất kỳ là một số dương. Chứng minh rằng tổng của 31 số đó là số dương.

Bài 5: (2 điểm)

      Cho các số tự nhiên từ 1 đến 11 được viết theo thứ tự tuỳ ý sau đó đem cộng mỗi số với số chỉ thứ tự của nó ta được một tổng. Chứng minh rằng trong các tổng nhận được, bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10.

Bài 6: (1,5 điểm)

     Cho tia Ox. Trên hai nữa mặt phẳng đối nhau có bờ là Ox. Vẽ hai tia Oy và Oz sao cho góc xOy và xOz bằng 1200. Chứng minh rằng:

a. Góc xOy = xOz = yOz

b. Tia đối của mỗi tia Ox, Oy, Oz là phân giác của góc hợp bởi hai tia còn lại.

0
13 tháng 9 2021

undefined

13 tháng 9 2021

hơi mờ xíu=>

25 tháng 12 2018

Bài 1: Chứng minh rằng mọi số nguyên x, y thì:

A = (x + y)(x + 2y)(x + 3y)(x + 4y) + là số chính phương.

Giải: Ta có A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4

= (x2 + 5xy + 4y2)(x2 + 5xy + 6y2) + y4

Đặt x2 + 5xy + 5y2 = t (t ∈ Z) thì

A = (t - y2)(t + y2) + y4 = t2 - y4 + y4 = t2 = (x2 + 5xy + 5y2)2

Vì x, y, z ∈ Z nên x2 ∈ Z, 5xy ∈ Z, 5y2 ∈ Z => (x2 + 5xy + 5y2) ∈ Z

Vậy A là số chính phương.

25 tháng 12 2018

Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.

Giải: Gọi 4 số tự nhiên, liên tiếp đó là n, n + 1, n + 2, n + 3 (n ∈ Z). Ta có:

n(n + 1)(n + 2)(n + 3) + 1 = n . ( n + 3)(n + 1)(n + 2) + 1

= (n2 + 3n)(n2 + 3n + 2) + 1 (*)

Đặt n2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2

= (n2 + 3n + 1)2

Vì n ∈ N nên n2 + 3n + 1 ∈ N. Vậy n(n + 1)(n + 2)(+ 3) + 1 là số chính phương.

3 tháng 12 2019

a)A=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^2017+3^2018+3^2019)

A=(3+3^2+3^3)+3^3x(3+3^2+3^3)+...+3^2016x(3+3^2+3^3) suy ra A chia hết cho (3+3^2+3^3)

Mà (3+3^2+3^3)=39;39 chia hết cho 13 nên A chia hết cho 13