Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^2-8x+20=\left(x^2-8x+16\right)+4=\left(x-4\right)^2+4>0\forall x\)
(do \(\left(x-4\right)^2\ge0\forall x\)
2) \(4x^2-12x+11=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2>0\forall x\)
(do \(\left(2x-3\right)^2\ge0\forall x\))
3) \(x^2-2x+y^2+4y+6=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x;y\)
(do ....)
4) \(\left(15x-1\right)^2+3\left(7x+3\right)\left(x+1\right)-\left(x^2-73\right)\)
\(=225x^2-30x+1+3\left(7x^2+10x+3\right)-x^2+73\)
\(=225x^2-30x+83+21x^2+30x-x^2\)
\(=245x^2+83>0\forall x\)
PTĐTTNT?
1.Đặt \(a^2+a=t\)
\(\Rightarrow\left(a^2+a\right)\left(a^2+a+1\right)-2\)
\(=t\left(t+1\right)-2\)
\(=t^2+t-2\)
\(=t^2+2t-\left(t+2\right)\)
\(=t\left(t+2\right)-\left(t+2\right)\)
\(=\left(t+2\right)\left(t-1\right)\)
Sửa đề:
\(x^4+2011x^2+2010x+2011\)
\(=\left(x^4-x\right)+2011x^2+2011x+2011\)
\(=x\left(x^3-1\right)+2011\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2011\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2011\right)\)
3. \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-120\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-120\)
Đặt \(x^2+5x+4=t\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-120\)
\(=t\left(t+2\right)-120\)
\(=t^2+2t+1-121\)
\(=\left(t+1\right)^2-11^2\)
\(=\left(t+1-11\right)\left(t+1+11\right)\)
\(=\left(t-10\right)\left(t+12\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+16\right)\)
\(=\left[\left(x^2-x\right)+\left(6x-6\right)\right]\left(x^2+5x+16\right)\)
\(=\left[x.\left(x-1\right)+6\left(x-1\right)\right]\left(x^2+5x+16\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x^2+5x+16\right)\)
4. \(\left(x^2+x+4\right)^2+8x\left(x^2+x+1\right)+15x^2\)
\(=\left(x^2+x+4\right)^2+2.\left(x^2+x+1\right).4x+\left(4x\right)^2-x^2\)
\(=\left(x^2+x+4+4x\right)^2-x^2\)
\(=\left(x^2+4+5x-x\right)\left(x^2+5x+x+4\right)\)
\(=\left(x^2+4x+4\right)\left(x^2+6x+4\right)\)
\(=\left(x+2\right)^2\left[\left(x^2+2.x.3+3^2\right)-\left(\sqrt{5}\right)^2\right]\)
\(=\left(x+2\right)^2\left[\left(x+3\right)^2-\left(\sqrt{5}\right)^2\right]\)
\(=\left(x+2\right)^2\left(x+3-\sqrt{5}\right)\left(x+3+\sqrt{5}\right)\)
1) Không mất tính tổng quát, giả sử \(a\le b\le c\Rightarrow3=a+b+c\le3c\Rightarrow1\le c\le2\Rightarrow\left(c-1\right)\left(c-2\right)\le0\)
\(LHS=a^2+b^2+c^2=\left(a^2+2ab+b^2\right)+c^2-2ab\)
\(\le\left(a+b\right)^2+c^2=\left(3-c\right)^2+c^2\)
\(=2\left(c-1\right)\left(c-2\right)+5\le5\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và các hoán vị.
2) Đề sai chỗ biểu thức M! Sao lại là M = x2 + y2 + x2 (chỗ mình in đậm)
3) Đề cho x, y, z không âm mà sao lại bắt chứng minh với các biến a, b? Sửa đề lại hết đi rồi mình làm nốt!
Mình xin lỗi vì viết sai nhé, phải là:
1) Cho 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Chứng minh a2 + b2 + c2 ≤ 5
2) Cho -3 ≤ x, y, z ≤ 1, x + y + z = -1. Tính giá trị nhỏ nhất của M = x2 + y2 +z2
3) Cho các số dương a, b có tổng bằng 1. CMR:
Ta có:
\(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=\left[3x\left(2x+11\right)-5\left(2x+11\right)\right]-\left[2x\left(3x+7\right)+3\left(3x+7\right)\right]\)
\(=\left[\left(6x^2+33x\right)-\left(10x+55\right)\right]-\left[\left(6x^2+14x\right)+\left(9x+21\right)\right]\)
\(=\left[6x^2+23x-55\right]-\left[6x^2+23x+21\right]\)
\(=-55-21=-76\)
Vậy biểu thức A không phụ thuộc vào biến x, y.
\(1)\)
\(a)\)\(A=5-8x-x^2\)
\(A=-\left(x^2+8x+16\right)+21\)
\(A=-\left(x+4\right)^2+21\le21\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+4\right)^2=0\)
\(\Leftrightarrow\)\(x=-4\)
Vậy GTLN của \(A\) là \(21\) khi \(x=-4\)
\(b)\)\(B=5-x^2+2x-4y^2-4y\)
\(-B=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)
\(-B=\left(x-1\right)^2+\left(2y+1\right)^2-7\ge-7\)
\(B=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(2y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)
Vậy GTLN của \(B\) là \(7\) khi \(x=1\) và \(y=\frac{-1}{2}\)
Chúc bạn học tốt ~
\(2)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(............\)
\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(2A=3^{128}-1\)
\(A=\frac{2^{128}-1}{3}\)
Chúc bạn học tốt ~
1.thay x=25 vào biểu thức A ta có:
25^3-15.25^2+75.25=8125
2.
a,x^3-3^3-x(x^2-2^2)-1=0
x^3-27-x^3+4x-1=0
4x-28=0
4(x-7)=0
X=7
b,(x^3+3x^2+3x+1)-(x^3-3x^2+3x-1)-6(x^2-2x+1)+10=0
x^3+3x^2+3x+1-X^3+3x^2-3x+1-6x^2+12x-6+10=0
12x+6=0
6(2x+1)=0
2x+1=0
2x=-1
x=-1/2
**** cho mk nha!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
= 100000
đề bài này sai rồi !