K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Lời giải:

\(\frac{x^2+y^2-z^2}{2xy}+\frac{y^2+z^2-x^2}{2yz}+\frac{x^2+z^2-y^2}{2xz}=1\)

\(\Leftrightarrow \frac{x^2+y^2-z^2}{2xy}+1+\frac{y^2+z^2-x^2}{2yz}-1+\frac{x^2+z^2-y^2}{2xz}-1=0\)

\(\Leftrightarrow \frac{(x+y-z)(x+y+z)}{2xy}+\frac{(y-z-x)(y-z+x)}{2yz}+\frac{(x-z-y)(x-z+y)}{2xz}=0\)

\(\Leftrightarrow (x+y-z)\left[\frac{x+y+z}{2xy}+\frac{y-z-x}{2yz}+\frac{x-z-y}{2xz}\right]=0\)

\(\Leftrightarrow (x+y-z)(xz+yz+z^2+xy-zx-x^2+xy-zy-y^2)=0\)

\(\Leftrightarrow (x+y-z)[z^2-(x-y)^2]=0\Leftrightarrow (x+y-z)(z-x+y)(x+z-y)=0\)

Nếu $x+y-z=0$ thì:

\(\frac{x^2+y^2-z^2}{2xy}=\frac{(x+y)^2-z^2-2xy}{2xy}=-1\)\(\frac{y^2+z^2-x^2}{2yz}=\frac{z(y-x)+z^2}{2yz}=\frac{y-x+z}{2y}=\frac{y-x+y+x}{2y}=1\)

\(\frac{x^2+z^2-y^2}{2xz}=1-(-1)-1=1\)

Ta có đpcm.

Các TH còn lại tương tự.

Vậy........

 

23 tháng 6 2020

Biến thì khác nhau nhưng quan trọng là cách làm :)) 

Vào TKHĐ của tớ để xem hình ảnh nhé, dài ngại chả muốn viết :V

NV
12 tháng 3 2021

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)

\(\Rightarrow yz=-xy-zx\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-zx}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

Tương tự: \(\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(y-x\right)\left(y-z\right)}\) ; \(\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-z\right)\left(y-z\right)}\)

\(\Rightarrow A=\dfrac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)

19 tháng 12 2020

Bài này ez thôi, làm mãi rồi.

Theo đề bài, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

=>\(\dfrac{xy+yz+xz}{xyz}=0\)

=> xy+yz+zx=0

=> \(\left\{{}\begin{matrix}xy=-yz-zx\\yz=-xy-zx\\zx=-xy-yz\end{matrix}\right.\)

Ta có: x2+2yz=x2+yz-xy-zx=(x-y)(x-z)

           y2+2xz=y2+xz-xy-yz=(x-y)(z-y)

           z2+2xy=z2+xy-yz-xz=(x-z)(y-z)

=> \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

 

 

 

19 tháng 12 2020

Cảm ơn, cậu giỏi quá!!! Thông cảm cho đứa ngu toánbucminh

Ta có :

\(x+y+z=1\)

\(\Rightarrow\left(x+y+z\right)^2=1\)

Áp dụng BĐT Cauchy-schwar dưới dạng engel ta có :

\(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2zx}+\dfrac{1}{z^2+2xy}\ge\dfrac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=\dfrac{9}{1}=9\)

4 tháng 5 2018

\(\text{Ta có : }x+y+z=1\\ \Rightarrow\left(x+y+z\right)^2=1\\ \Rightarrow x^2+y^2+z^2+2xy+2xz+2yz=1\\ \Rightarrow\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xz}+\dfrac{1}{z^2+2xy}\\ =\dfrac{x^2+y^2+z^2+2xy+2xz+2yz}{x^2+2yz}+\dfrac{x^2+y^2+z^2+2xy+2xz+2yz}{y^2+2xz}+\dfrac{x^2+y^2+z^2+2xy+2xz+2yz}{z^2+2xy}\\ =\dfrac{x^2+2yz}{x^2+2yz}+\dfrac{y^2+2xz}{x^2+2yz}+\dfrac{z^2+2xy}{x^2+2yz}+\dfrac{x^2+2yz}{y^2+2xz}+\dfrac{y^2+2xz}{y^2+2xz}+\dfrac{z^2+2xy}{y^2+2xz}+\dfrac{x^2+2yz}{z^2+2xy}+\dfrac{y^2+2xz}{z^2+2xy}+\dfrac{z^2+2xy}{z^2+2xy}\\ =1+\left(\dfrac{y^2+2xz}{x^2+2yz}+\dfrac{x^2+2yz}{y^2+2xz}\right)+\left(\dfrac{z^2+2xy}{x^2+2yz}+\dfrac{x^2+2yz}{z^2+2xy}\right)+1+\left(\dfrac{y^2+2xz}{z^2+2xy}+\dfrac{z^2+2xy}{y^2+2xz}\right)+1\)Áp dụng \(BDT:\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

\(\Rightarrow1+\left(\dfrac{y^2+2xz}{x^2+2yz}+\dfrac{x^2+2yz}{y^2+2xz}\right)+\left(\dfrac{z^2+2xy}{x^2+2yz}+\dfrac{x^2+2yz}{z^2+2xy}\right)+1+\left(\dfrac{y^2+2xz}{z^2+2xy}+\dfrac{z^2+2xy}{y^2+2xz}\right)+1\\ \ge1+2+2+1+2+1\ge9\left(đpcm\right)\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}y^2+2xz=x^2+2yz\\z^2+2xy=x^2+2yz\\y^2+2xz=z^2+2xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y^2-2yz=x^2-2xz\\z^2-2yz=x^2-2xy\\y^2-2xy=z^2-2xz\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y^2-2yx+z^2=x^2-2xz+z^2\\z^2-2yz+y^2=x^2-2xy+y^2\\y^2-2xy+x^2=z^2-2xz+x^2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(y-z\right)^2=\left(x-z\right)^2\\\left(z-y\right)^2=\left(x-y\right)^2\\\left(y-x\right)^2=\left(z-x\right)^2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y-z=x-z\\z-y=x-y\\y-x=z-x\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\z=x\\y=z\end{matrix}\right.\Leftrightarrow x=y=z\\\text{Mà } x+y+z=1\\ \Leftrightarrow3x=1\\ \Leftrightarrow x=\dfrac{1}{3}\\ \Leftrightarrow x=y=z=\dfrac{1}{3}\)

Vậy \(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xz}+\dfrac{1}{z^2+2xy}\ge9\) với \(x;y;z>0\)\(x+y+z=1\)

đẳng thức xảy ra khi : \(x=y=z=\dfrac{1}{3}\)

19 tháng 1 2021

Đẳng thức đã cho tương đương với:

\(\dfrac{x^2z+y^2z-z^3+y^2x+z^2x-x^3+z^2y+x^2y-y^3}{2yxz}=1\)

\(\Leftrightarrow x^3+y^3+z^3+2xyz-x^2y-y^2z-z^2x-xy^2-yz^2-zx^2=0\)

\(\Leftrightarrow\left(x+y-z\right)\left(y+z-x\right)\left(z+x-y\right)=0\Leftrightarrow z+x=y\) (Do x + y khác z và y + z khác x).

Từ đó P = 2y (Biểu thức của P phụ thuộc vào biến y).

19 tháng 1 2021

Vậy từ giả thiết đó bạn có thể CMR P=0 đc k

Giúp mk ba mk đg cần gấp