K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2019

Từ A kẻ AH⊥BC (H∈BC). ΔABC vuông cân ở A có AH là đường cao đồng thời là đường trung tuyến 
- Gọi giao điểm của AH và BM là G → G là trọng tâm ΔABC→ AG/AH=2/3
- ΔADBcóBG⊥AD; AH⊥BE→G là trực tâm tam giác ABD→ GD⊥AB→ AC//GD→ DC/CH=2/3
→ HD=1/3CH→ BD=BH+HD=CH+1/3CH=4/3CH
- Ta có DB:DC=2->đfcm

nhớ tích tau với

1 tháng 3 2019

cho tau sửa d thay bằng e

7 tháng 2 2020

bn lên Google gõ tên đê bài sẽ có câu hỏi tương tự của Lý Duy Gia Bảo đó.Kurukawa Neko đã trả lởi r nhưng mk ko copy đc.

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0

a) Xét ∆ vuông ABC và ∆ vuông AED ta có : 

AB = AD (gt)

AC = AD (gt)

=> ∆ABC = ∆AED ( 2 cgv)

=> BD = DE 

b) Xét ∆ABD có : 

BAC = 90° 

=> AD\(\perp\)AE 

Mà AB = AD (gt)

=> ∆ABD vuông cân tại A 

=> BDC = 45° 

Chứng minh tương tự ta có : 

BCE = 45° 

=> BDC = BCE = 45° 

Mà 2 góc này ở vị trí so le trong 

=> BD//CE

15 tháng 8 2015

dòng cuối: em sửa lại kết luận:  tam giác DIE vuông nhé!

25 tháng 8 2017

2. Cho tam giác ABC vuông cân tại A.. Qua A vẽ đường thẳng d ở ngoài tam giác ABC . Vẽ BD vuông góc với d taị D. CE vuông góc với d tại E. M là trung điểm CB. Chứng minh rằng:

a) BD + CE = DE

b) Tam giác MDE là tam giác vuông cân

3 tháng 5 2017

A B C D E K H M

a. Có thể em thiếu giả thiết đọ lớn của các canhk AB, AC. Nếu có, ta dùng định lý Pi-ta-go để tính độ dài BC.

b. Ta thấy ngay tam giác ABE bằng tam giác DBE (cạnh huyền - cạnh góc vuông)

Từ đó suy ra \(\widehat{ABE}=\widehat{DBE}\) hay BE là phân giác góc ABC.

c. Ta thấy  tam giác ABC bằng tam giác DBK (cạnh góc vuông - góc nhọn kề)

nên AC = DK.

d. Do tam giác ABE bằng tam giác DBE nên \(\widehat{AEB}=\widehat{DEB}\)

Lại có AH // KD (Cùng vuông góc BC) nên \(\widehat{AME}=\widehat{MED}\) (so le trong)

Vậy \(\widehat{AME}=\widehat{AEM}\)

Vậy tam giác AME cân tại A.