Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B H M N C I
a, Xét \(\Delta ABH\) và \(\Delta MBH\) ta có:
\(\widehat{AHB}=\widehat{MHB}=90^o,AH=MH,\) cạnh chung \(BH\)
\(\Rightarrow\Delta ABH=\Delta MBH\left(c.g.c\right)\) ( ĐPCM )
b, Vì \(\Delta ABH=\Delta MBH\Rightarrow AB=MB\) ( 2 cạnh tương ứng )
\(\widehat{ABH}=\widehat{MBH}\) ( 2 góc tương ứng ) \(\Rightarrow\widehat{ABC}=\widehat{MBC}\)
Xét \(\Delta ABC\) và \(\Delta MBC\) ta có:
\(AB=MB,\widehat{ABC}=\widehat{MBC},\) cạnh chung \(BC\)
\(\Rightarrow\Delta ABC=\Delta MBC\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAC}=\widehat{BMC}\) ( 2 góc tương ứng ) ( ĐPCM )
c, Xét \(\Delta AHI\) và \(\Delta MHI\) ta có:
\(AH=MH,\widehat{AHI}=\widehat{MHI}=90^o,\) cạnh chung \(HI\)
\(\Rightarrow\Delta AHI=\Delta MHI\left(c.g.c\right)\)
\(\Rightarrow AI=MI\) ( cạnh tương ứng ) \(\Rightarrow AI=NI=MI\Rightarrow AI=MI\)
\(\widehat{AIH}=\widehat{MIH}\) ( 2 góc tương ứng ) \(\Rightarrow\widehat{AIB}=\widehat{MIB}\)(1)
Vì \(\widehat{AIH}\) và \(\widehat{CIN}\) là 2 góc đối đỉnh \(\Rightarrow\widehat{AIB}=\widehat{CIN}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{MIB}=\widehat{AIB}=\widehat{CIN}\Rightarrow\widehat{MIB}=\widehat{CIN}\)
Vì I là trung điểm của BC => BI = CI
Xét \(\Delta BIM\) và \(\Delta CIN\) ta có:
\(BI=CI,\widehat{MIB}=\widehat{CIN},MI=NI\)
\(\Rightarrow\Delta BIM=\Delta CIN\left(c.g.c\right)\)
\(\Rightarrow NC=MB\) ( 2 cạnh tương ứng ) ( ĐPCM )
d, Xét tam giác vuông ABH, theo định lý Py-ta-go ta có:
\(AB^2=AH^2+BH^2\Rightarrow13^2=AH^2+12^2\Rightarrow169=AH^2+144\)
\(\Rightarrow AH^2=169-144=25\Rightarrow AH=\sqrt{25}=5\)
Xét tam giác vuông AHC, theo định lý Py-ta-go ta có:
\(AC^2=AH^2+CH^2\Rightarrow AC^2=5^2+16^2\Rightarrow AC^2=25+256\)
\(\Rightarrow AC^2=281\Rightarrow AC=\sqrt{281}\)
Vì điểm H nằm giữa điểm B và điểm C \(\Rightarrow BC=AH+CH\Rightarrow BC=12+16\Rightarrow BC=28\)
mình nghĩ là BH vuông góc với AE thì đúng hơn
Nếu như thế thì làm như thế này
Hình tự vẽ
Tam giác ABC vuông cân tại A => AB=AC;góc ABC= góc ACB
Xét tam giác ABM và tam giác ACM có
AB=AC(cmt)
AM chung
MA=MC(gt)
=> Tam giác ABM = tam giác ACM (c.c.c)
=> Góc BMA= góc CMA (t.ứng)
mà góc BMA + góc CMA =180 độ
=> góc BMA=góc CMA=90 độ
=> AM vuông góc với BC
........................................................phần này mình làm trước để tí câu c cho dễ làm.......................................
a,Xét tam giác HAB và tam giác KCA có:
AB=AC(gt)
góc AHB = góc CKA(=90 độ)
góc ABH = góc CAK( 2 góc nhọn có cạnh tương ứng vuông góc bằng nhau)
=> Tam giác HAB = tam giác KCA(ch-gn)
=> BH=AK(t.ứng)
c; Tam giác ABC vuông cân tại và góc A =90 độ => góc ABM = góc ACM(=45 độ)
Tam giác ACM vuông tại M => góc MAC=góc AMC - góc MCA =90 độ - 45 độ =45 độ
Ta có : \(\widehat{MBH}=\widehat{MBA}-\widehat{HAB}=45^o-\widehat{HAB}\)
\(\widehat{MAK}=\widehat{MAC}-\widehat{EAC}=45^o-\widehat{EAC}\)
mà \(\widehat{HBA}=\widehat{KAC}\left(vì\Delta HAB=\Delta KCA\right)\Rightarrow\widehat{MBH}=\widehat{MAK}\)
Xét tam giác MBH và tam giác MAK có
BH=AK(câu b)
góc MBH = góc MAK(cmt)
góc BHM =góc AKM(2 góc nhọn có cạnh tương ứng vuông góc bằng nhau)
=> Tam giác MBH = tam giác MAK (g.c.g)
d,Tam giác MBH = tam giác MAK(câu c)=> MH=MK(t.ứng)
=>Tam giác HMK cân tại M(1)
Tam giác BHM= tam giác AKM(câu c)=> góc BNH = góc AMK
=> Góc AMK - 90 độ = góc BMH - 90 độ
=> góc AMH = góc EMK
=> góc HME + góc EKM = góc HME + góc AMH=90 độ(2)
Từ (1)(2) => Tam giác MHK vuông cân tại M
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
a1, Xét tam giác AMB và tam giác AMC có :
AM chung
B=C(tam giác ABC cân )
AB=AC9tam giác ABC cân)
Do đó tam giác AMB=tam giác AMC(c.g.c)
a2, Vì tam giác AMB=tam giác AMC( cmt)
=>Bam=Cam ( 2 góc tương ứng)
=>AM là tia p/g góc A
Mình ms làm xong câu a thôi đợi mình nghĩ nót câu kia đã. bạn tick nha mình đảm bảo đúng
A K M I C H B N
a)
Ta có nối K với M
=> Xét t/gMCK và t/gMHC ta có:
CK=CH (gt) hay ^KCM=^MCH (gt)
MC (cạnh chung)
=>t/gMCK = t/gMCH (c.g.c)
=>MK=MH ( tương ứng)
đpcm.
b) Tiếp tục nối K và H
Gọi I là giao điểm của CM và KH
Xét t/gICK và t/gICH ta có:
CK=CH (gt) hay ^HCM=^CMK (gt)
CI (cạnh chung)
=>t/gICK=t/gICH (c.g.c)
=>^CIK=^CIH( tương ứng)
Mà ^CIK+^CIH=180o( góc kề bù)
=>^CIK=^CIH=90o
=>CI_|_HK
=>CM_|_HK
đpcm.
c) Quan sát hình ta thấy ^CMH=65o=^CMN=65o (1)
Vì ^KCM+^MCN=90o
=>^MCN=90o-^KCM
=>^MCN=90o-35o
=>^MCN=65o(2)
Từ (1) và (2) vì ^NMC=^NCM => t/gNMC là t/g cân.
đpcm.
mình vẽ hình thôi nha:
A C H K M B
cảm ơn bn nhìu ạ <3