Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABM và tam giác DCM có
+ BM=CM ( gt)
+ Góc AMB = góc DMC ( đối đỉnh)
+ AM = DM
=> tam giác ABM = tam giác DCM ( c-g-c)
b) Vì tam giác ABM = tam giác DCM
=> góc BAM = Góc CDM ( 2 góc tương ứng )
Ta có : Góc BAM = Góc CDM ( c/m trên)
Mà góc BAM + CAM = 180độ( 2 góc kề bù ) (1)
góc CDM + BDM = 180độ ( 2 góc kề bù ) (2)
Mà góc BAM = góc CDM
Từ (1) và (2) => Góc CAM = góc BDM
Xét tam giác ACM và tam giác BDM có
+ Góc CAM = BDM ( c/m trên)
+ BM = CM ( gt)
+ góc BMD = góc AMC ( đối đỉnh )
=> Tam giác ACM = tam giác BDM ( g.c.g)
=> AC = BD ( 2 cạnh tương ứng)
c) bạn tự làm ạ . Mình bận
A B C D M
a) +) Xét \(\Delta\)ABM và \(\Delta\)DCM có
BM = CM ( gt)
\(\widehat{AMB}=\widehat{CMD}\) ( 2 góc đối đỉnh )
AM = DM ( gt)
=> \(\Delta\)ABM = \(\Delta\)DCM ( c-g-c)
b) +) Xét \(\Delta\)AMC và \(\Delta\)DMB có
AM = DM ( gt)
\(\widehat{AMC}=\widehat{BMD}\) ( 2 góc đối đỉnh )
MC = MB ( gt)
=> \(\Delta\)AMC = \(\Delta\)DMB ( c-g-c)
=> AC = DB ( 2 cạnh tương ứng )
và \(\widehat{ACM}=\widehat{DBM}\) ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong
=> AC // BD
c) +) Theo câu a ta có \(\Delta\)ABM = \(\Delta\)DCM
=> \(\widehat{ABM}=\widehat{DCM}\) ( 2 góc tương ứng )
+) Xét \(\Delta\)ABC và \(\Delta\)DCB có
\(\widehat{ABM}=\widehat{DCM}\) ( cmt)
BC : cạnh chung
\(\widehat{ACM}=\widehat{DBM}\) ( cmt)
=> \(\Delta\)ABC = \(\Delta\)DCB (g-c-g)
=> \(\widehat{BAC}=\widehat{CDB}\) ( 2 góc tương ứng )
Mà \(\widehat{BAC}=90^o\) ( gt)
=> \(\widehat{CDB}=90^o\)
Học tốt
Takigawa Maraii
p/s: Bạn tự vẽ hình nha!! ^ ^
a) Xét \(\Delta\)AMC và \(\Delta\)DMB có:
AM = MD (gt)
\(\widehat{AMC}=\widehat{BMD}\)(hai góc đối đỉnh).
BM = MC (gt)
=> Xét \(\Delta\)AMC = \(\Delta\)DMB (c.g.c)
b) Xét tứ giác ABCD có:
AM = MD (gt)
BM = MC (gt)
\(\widehat{BAC}\)= 90 độ
=> ABCD là hình bình hành (DHNB)
=> \(\Delta ABC=\Delta BAD\)(đpcm).
c) Vì \(\Delta\)ABC vuông tại A, đường trung tuyến AM => AM = 1/2 BC (tính chất đường trung tuyến bằng nửa cạnh huyền trong tam giác vuông).
_Kik nha!! ^ ^
a) Ta có: Trong một tam giác vuông đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh hyền.
Áp dụng vào bài, ta có:
AM=1/2 BC.\(\Rightarrow\)M là trung điểm của BC => MB=MC=MA
Mà AM=MD => MD=MB=MC
=> tam giác BMD cân tại M
tam giác AMC cân tại M
tam giác AMB cân tại M
Xét tam giác BMD và tam giác AMC có:
BM=MC(chứng minh trên)
\(\widehat{BMD}=\widehat{AMC}\)(2 góc đối đỉnh)
AM=MD(giả thiết)
=> tam giác BMD=tam giác AMC (c-g-c)
=> \(\widehat{DBM}=\widehat{MAC}\)(2 góc tương ứng)
Mà \(\widehat{MAC}+\widehat{MAB}=\widehat{BAC}=90^0\)
Mà \(\widehat{MAB}=\widehat{MBA}\)(do tam giác MAB cân tại M)
\(\Rightarrow\widehat{MAC}+\widehat{MBA}=90^0\)
\(\Rightarrow\widehat{MBD}+\widehat{DMB}=\widehat{ABD}=90^0\)
b) Xét tam giác ABC và tam giác BAD có:
AB-cạnh chung
\(\widehat{BAC}=\widehat{ABD}\left(=90^0\right)\)
AC=BD(do tam giác BMD=tam giác AMC)
=> tam giác ABC= tam giác BAD(c-g-c)
c)
Ta có: Trong một tam giác vuông đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh hyền nên:
AM=1/2 BC
A A A B B B C C C D D D M M M 1 1 2 1 2
a) Xét \(\Delta AMC\)và \(\Delta DMB\),ta có :
AM = DM(gt)
\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)
CM = BM(vì M là trung điểm của BC)
=> \(\Delta AMC=\Delta DMB\left(c.g.c\right)\)
=> \(\widehat{C}=\widehat{B_1}\)(hai góc tương ứng)
AC = BD(hai cạnh tương ứng)
Khi đó \(\widehat{ABD}=\widehat{B_1}+\widehat{B_2}=\widehat{B_1}+\widehat{C}=90^0\)
Vậy góc ABD = 900
b) Xét \(\Delta ABC\)và \(\Delta BAD\)có :
AB chung
AC = BD(cmt)
=> \(\Delta ABC=\Delta BAD\)(hai cạnh góc vuông)
c) Từ kết quả câu b)
=> BC = AD = 2AM <=> \(AM=\frac{1}{2}BC\)
Em kiểm tra lại đề bài nhé! Trên tia đối tia AM hay tia đối tia MA ?
a) tam giác MAC = tam giác BAD theo trường hợp cạnh góc cạnh
Có: MC = MB (AM trung tuyến)
AMC = DMB (2 góc đối đỉnh)
MA = MD (theo giả thiết)
=> 2 tam giác bằng nhau theo trường hợp cạnh góc cạnh
b)
Tam giác ABC có góc A=90 độ
Suy ra: góc ACB+ góc CBA= 90 độ
Mà : góc ACB (hay góc ACM) = DBM (2 tam giác bằng nhau, chứng minh trên)
Suy ra: góc DBM + CBA = 90 độ
Hay DBA=90 độ