K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

Gọi các cạnh tương ứng với các đường cao 3 cm; 4cm; 6 cm là a, b, c ( >0; cm )

Ta có: Diện tích của tam giác là:

\(\frac{1}{2}.3.a=\frac{1}{2}.4.b=\frac{1}{2}.6.c\)

=> \(3a=4b=6c\)

=> \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)

Độ dài đường cao tỉ lệ nghịch với độ dài cạnh đáy tương ứng => a là cạnh dài nhất

=> b + c - a = 1 

Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{b+c-a}{\frac{1}{6}+\frac{1}{4}-\frac{1}{3}}=\frac{1}{\frac{1}{12}}=12\)

=> a = \(\frac{1}{3}.12=4\)cm 

b = 3 cm 

c = 2 cm

=> Chu vi tam giác là: a + b + c = 4 +   3 + 2 = 9 cm 

11 tháng 12 2019

Câu hỏi của cần giải - Toán lớp 7 - Học toán với OnlineMath

Gọi các đường cao lần lượt là x và y ( x > y).

      diện tích tam giác là S.

Ta có:    \(S=\frac{28\times x}{2}\)  \(=\frac{36\times y}{2}\)\(\Rightarrow28\times x=36\times y\)

lại có: x-y=10 => x=y+10

Thay vào biểu thứ trên, ta được:

\(28\times\left(y+10\right)=36\times y\)

\(\Leftrightarrow28\times y+280=36\times y\)

\(\Leftrightarrow280=8\times y\)

\(\Leftrightarrow y=35\left(cm\right)\)

\(\Rightarrow x=10+y=10+35=45\left(cm\right)\)

Vậy độ dài 2 cạnh là 45cm và 35cm.

a,A+B+C=180 độ \(\Rightarrow C=30\)độ

\(\Rightarrow A>B>C\Rightarrow AB< AC< BC\)(t/c............)

b, t/gBAD=t/gBKD(c-g-c) suy ra DA=DK

c,BDC cân vì có DBC=DCB=30 độ 

d, théo t/c của tam giác vuông (cạnh đối diện vs góc 30 độ =1/2 cạnh huyền)

30 tháng 6 2021

thế kb=kc cm kiểu j vaayj bn

 

19 tháng 11 2016

Giải:
Gọi 3 cạnh của tam giác ABC lần lượt là a, b, c ( a > b > c > 0 )

Ta có: \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\) và a - c = 10

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a-c}{5-3}=\frac{10}{2}=5\)

+) \(\frac{a}{5}=5\Rightarrow a=25\)

+) \(\frac{b}{4}=5\Rightarrow b=20\)

+) \(\frac{c}{3}=5\Rightarrow c=15\)

Vậy 3 cạnh của tam giác lần lượt là 15 cm, 20 cm và 25 cm

 

19 tháng 11 2016

Gọi độ dài các cạnh của tam giác lần lượt là a , b , c (theo thứ tự nhỏ đến lớn)

Theo đề bài , ta có :

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và c + 10 = a + b

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{c+10}{7}\)

=> \(\frac{c+10}{7}=\frac{c}{5}\)

=> 5(c + 10) = 7c

=> 5c + 50 = 7c

=> 50 = 2c

=> c = 25

=> a + b = 25 + 10 = 35

Áp dụng tính chất dãy tỉ số , ta có :

\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{35}{7}=5\)

=> a = 3.5 = 15

b = 4.5 = 20

5 tháng 11 2021
Toán lớp 7 thì chịu r

Bài 1: 

a) Ta có: MN2+MP2=152+202=625

               NP2=252=625

=> MN2+MP2=NP2

=> \(\Delta MNP\)vuông tại M ( theo định lý Py-ta-go đảo)

=> đpcm

b) Ta có I là trung điểm MP

=> \(IM=IP=\frac{MP}{2}=\frac{20}{2}=10\left(cm\right)\)

Xét \(\Delta MNI\)vuông tại M có:

MN2+MI2=NI2 ( theo định lý Py-ta-go)

= 152+102=325

=> NI= \(\sqrt{325}\approx18\left(cm\right)\)

Bài 2: 

Xét \(\Delta ABD\)vuông tại D có:

\(AD^2+BD^2=AB^2\)(Theo định lý Py-ta-go)

\(\Rightarrow AD^2+15^2=17^2\)

\(\Rightarrow AD^2=17^2-15^2=64=8^2\)

\(\Rightarrow AD=8\left(cm\right)\)

Lại có: AC=AD+DC

=> 17=8+DC

=> DC=9 cm

Xét \(\Delta BDC\)vuông tại D có:

\(BD^2+DC^2=BC^2\)(Theo định lý Py-ta-go)

\(\Rightarrow BC^2=15^2+9^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17\left(cm\right)\)

Vậy BC\(\approx\)17 cm

24 tháng 2 2020

Xét \(\Delta ABC\perp A\)ta có:

AM là trung tuyến ứng cạnh huyền BC

=> AM=BM=CM=41

Xét \(\Delta AHM\perp H\)ta có:

\(HM^2=AM^2-AH^2\left(pytago\right)\)

\(\Rightarrow HM^2=41^2-40^2=81\)

\(\Rightarrow HM=\sqrt{81}=9\)

Ta có: \(\hept{\begin{cases}BH=BM-HM=41-9=32\\CH=CM+HM=41+9=50\end{cases}}\)

Xét \(\Delta ABH,\Delta ABC\)có:

\(\widehat{AHB}=\widehat{CAB}\left(=90^o\right)\)

\(\widehat{B}:chung\)

\(\Rightarrow\Delta ABH\approx\Delta ABC\left(gg\right)\)

\(\Rightarrow\frac{AB}{BH}=\frac{BC}{BA}\Rightarrow BA^2=BH\cdot BC\)

Xét \(\Delta CHA,\Delta CAB\)có:

\(\widehat{CHA}=\widehat{CAB}\left(=90^o\right)\)

\(\widehat{C}:chung\)

\(\Rightarrow\Delta CHA\approx\Delta CAB\left(gg\right)\)

\(\Rightarrow\frac{AC}{CH}=\frac{BC}{AC}\Rightarrow AC^2=CH\cdot BC\)

Ta có: 

\(\left(\frac{AB}{BC}\right)^2=\frac{BH\cdot BC}{HC\cdot BC}=\frac{BH}{HC}=\frac{32}{50}=\frac{16}{25}\)

Vậy \(\frac{AB}{BC}=\frac{16}{25}\)

24 tháng 2 2020

:> hình dễ bn có thể tự vẽ:Đ vì mik ngại :>

Xét t/gABC_|_ A ta có:

AM là trung tuyến ứng vs cạnh huyền BC

=>AM=BM=CM=41

Lại xét t/gAHM_|_H theo định lý pi-ta-go ta có:

HM2=AM2-AH2 

=>HM2=412-402=81

=>HM=\(\sqrt{81}\)=9

Ta có: 

BH=BM-HM=41-9=32

CH=CM+HM=41+9=50

Xét t/gABH và t/gABC ta có:

^ABH=^ABC=90o

=>^B chung

=>t/gABH~t/gABC(g.g)

=>BA/BH=BC/BA=>BA2=BH.BC

Xét t/gCAB và t/g CHA ta có:

^CAB=^CHA=90o

=>^C chung

=>AC/AH=BC/AC=>AC2=HC.BC

=>(AB/AC)2=BH.BC/HC.BC=32/50=16/25

=> tỉ số hai cạnh góc AB/AC=16/25