K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2020

B H A C 20cm 52cm 48cm

a) 

Ta có: BC2=52cm= 5704 (cm)

=> AC2+ AB=482+202=2304+400=2704 (cm)

=> BC2=AC2+AB2=2704(cm)

=> \(\Delta ABC\) là tam giác vuông ở A

đpcm.

b)

Diện tích tam giác ABC là:

48.20:2=480 (cm2)

Độ dài chiều cao AH là:

480.2:52 = 260/13 (cm)

Vậy.....

3 tháng 2 2020

B A C H 20 48 52

a, Ta có : \(BC^2=52^2=2704\)

\(AB^2+AC^2=20^2+48^2=400+2304=2704=52^2\)

Vậy : \(BC^2=AB^2+AC^2\)

Tam giác ABC vuông ở A

b, Ta có : \(S_{ABC}=\frac{1}{2}AB\cdot AC=\frac{1}{2}\cdot20\cdot48=10\cdot48=480\left(cm^2\right)\)

Mặt khác \(S_{ABC}=\frac{1}{2}AH\cdot BC,AH=\frac{2S_{ABC}}{52}=\frac{2\cdot480}{52}\approx18,5\left(cm\right)\)

Phần b bạn dưới làm sai

hnay ma nhập nên bài hình nhiều ==

a, Theo định lí Py ta go 

Ta cs : \(BC^2=AB^2+AC^2\)

\(52^2=20^2+48^2\)

\(52^2=2704\)

\(52=\sqrt{2704}=52\)

Vậy tam giác ABC vuông tại A ( theo định lí Py ta go đảo )

A B C 52cm 20cm 48cm H

Vì H nằm giữa B và C

=> HC = HB = 52 . 1/2 = 26cm 

Rồi AD định lí Py ta go 

19 tháng 3 2020

a. Áp dụng định lí Py-ta-go đảo

522=202+482

=> 2704 = 400 + 2304

=> 2704 = 2704

=> BC2=AB2+AC2

=> tam giác ABC vuông tại A

11 tháng 9 2016

a) Theo định lý Pi-ta-go

Ta có : \(\sqrt{20^2+48^2}\)=52

                Vậy tam giác vuông tại A.

b

31 tháng 3 2020

A.    áp dụng định lý pytago trong tam giác abc ta có:

(ab2+ac2)=bc2

=>202+482=522(hợp lí)

=>tam giác abc vuông tại A

B.     ta có BH=CH=52:2=26

Xét tam giác ahc có :

CH2+AH2=AC2

=>AH2=AC2-CH2

=>AH2=482-262

=>AH2=1628

=>AH=40.34.....

5 tháng 2 2016

a/ ta có BC2=522=2704

AB2+AC2=20^2+48^2=400+2304=2704

vì 2704=2704 nên BC2=AB2+AC2 hay tam giác ABC vuông tại A

 

A B C E P Q H F

Bài làm

a) Xét ΔAPE và ΔAPH có:

AP (chung)

EPA = HPA = 90o 

PE = PH (gt)

Do đó: ΔAPE = ΔAPH( c−g−c )

Xét ΔAQH và ΔAQF có:

AQ (chung)

AQH = AQF = 90o 

AH = AF (gt)

Do đó: ΔAQH=ΔAQF(c−g−c)

b) Vì ΔAPE = ΔAPH ( cmt )

=> EA = AH ( hai cạnh t/ứng )       (1) 

=> Tam giác EAH cân tại A

Vì ΔAQH = ΔAQF ( cmt )

=> AH = AF  ( hai cạnh t/ứng )        (2)  

Từ (1) và (2) => EA = AF 

=> A là trung điểm của EF 

~ Mik quên cách chứng minh thẳng hàng rồi. ~
# Học tốt #

a: Xét ΔAPE vuông tại p và ΔAPh vuông tại P có

AP chung

PE=PH

DO đó: ΔAPE=ΔAPH

Xét ΔAQH vuông tại Q và ΔAQF vuông tại Q có

AQ chung

QH=QF

Do đó: ΔAQH=ΔAQF

b: Ta có: ΔAHP=ΔAEP

nen góc HAP=góc EAP

=>AB là phân giác của góc HAE(1)

Ta có: ΔAHQ=ΔAFQ

nen góc FAC=góc HAC

=>AC là phân giác của góc HAF(2)

Từ (1) và (2) suy ra góc FAE=2x90=180 độ

=>F,A,E thẳng hàng

mà AE=AF

nên A là trung điểm của FE