Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
Vì ΔABCΔABC cân nên ⇒Bˆ=C1ˆ⇒B^=C1^
Mà C1ˆ=C2ˆC1^=C2^ ( 2 góc đối đỉnh ) ⇒Bˆ=C2ˆ⇒B^=C2^
Xét ΔABDΔABD vàΔICEΔICE có
CI=CA(gt)Bˆ=Cˆ2BD=CE(gt)⇒ΔABD=ΔICE(c−g−c)CI=CA(gt)B^=C^2BD=CE(gt)⇒ΔABD=ΔICE(c−g−c)
2) Xét ΔBMDΔBMD và ΔNECΔNEC có:
BMDˆ=CNEˆ=(900)Bˆ=C2ˆ(cmt)BD=CE⇒ΔBMD=ΔNECBMD^=CNE^=(900)B^=C2^(cmt)BD=CE⇒ΔBMD=ΔNEC ( cạnh huyền - góc nhọn)
⇒BM=CN⇒BM=CN ( 2 cạnh tương ứng )
~Học tốt!~
Cho tam giác abc vuông cân ở a ,m là trung điểm của bc, điểm e nằm giữa m và c.Ke bh,ck vuông với ae (h,k€ae) chứng minh bh=ak.C/m tam giác mbh= tam giác mak.C/m tam giác mhklaf tam giác vuông cân .Vex hình luôn cho mình mình cần gấpkhoang 6 tiênd nữa
A K M I C H B N
a)
Ta có nối K với M
=> Xét t/gMCK và t/gMHC ta có:
CK=CH (gt) hay ^KCM=^MCH (gt)
MC (cạnh chung)
=>t/gMCK = t/gMCH (c.g.c)
=>MK=MH ( tương ứng)
đpcm.
b) Tiếp tục nối K và H
Gọi I là giao điểm của CM và KH
Xét t/gICK và t/gICH ta có:
CK=CH (gt) hay ^HCM=^CMK (gt)
CI (cạnh chung)
=>t/gICK=t/gICH (c.g.c)
=>^CIK=^CIH( tương ứng)
Mà ^CIK+^CIH=180o( góc kề bù)
=>^CIK=^CIH=90o
=>CI_|_HK
=>CM_|_HK
đpcm.
c) Quan sát hình ta thấy ^CMH=65o=^CMN=65o (1)
Vì ^KCM+^MCN=90o
=>^MCN=90o-^KCM
=>^MCN=90o-35o
=>^MCN=65o(2)
Từ (1) và (2) vì ^NMC=^NCM => t/gNMC là t/g cân.
đpcm.
Hình ; tự vẽ
Xét tam giác ADB và tam giác ADE có :
\(\widehat{BAD}=\widehat{EAD}\) ( do AD là tia p/g của \(\widehat{BAC}\))
AB = AE ( gt )
AD là cạnh chung
nên tam giác ADB = tam giác ADE ( c.g.c )
=> DB=DE ( hai cạnh tương ứng )
b) Có : \(\widehat{DBA}+\widehat{DBK}=180^O\)( Hai góc kề bù )
Có : \(\widehat{DEA}+\widehat{DEC}=180^{O^{ }}\)( Hai góc kề bù )
mà \(\widehat{DEA}=\widehat{DBA}\)( Do tam giác ADB = tam giácADE ) ((đã chứng minh ở phần a ))
=> \(\widehat{DBK}=\widehat{DEC}\)
Xét tam giác DBK = tam giác DEC có :
\(\widehat{DBK}=\widehat{DEC}\) ( cm trên )
BD = ED ( do tam giác ADB = tam giác ADE )
\(\widehat{BDK}=\widehat{EDC}\) ( hai góc đối đỉnh )
nên...........
A B C I E D
a) Xét △IAB và △IAD có:
AB = AD (gt)
IAB = IAD (AI: phân giác BAD)
AI: chung
=> △IAB = △IAD (c.g.c)
=> IB = ID (2 cạnh tương ứng)
b) Ta có:
ABI + IBE = 180o (kề bù)
ADI + IDC = 180o (kề bù)
Mà ABI = ADI (△ABI = △ADI)
=> IBE = IDC
Xét △BEI và △DCI có:
IBE = IDC (cmt)
IB = ID (cm câu a)
BIE = DIC (đối đỉnh)
=> △BEI = △DCI (g.c.g)
c) Vì AB = AD (cmt)
=> △ABD cân tại A
=> ABD = \(\frac{180^o-\widehat{BAD}}{2}\) (1)
Ta có:
AE = AB + BE
AC = AD + DC
Mà AB = AD (gt), BE = DC (△BIE = △DIC)
=> AE = AC => △AEC cân tại A
=> AEC = \(\frac{180^o-\widehat{BAD}}{2}\) (2)
Từ (1) và (2) => ABD = AEC
Mà hai góc ở vị trí so le trong => BD // EC
d) Ta có: ABC = 2ACB
Lại có: ABC = BIE + BEI (tính chất góc ngoài)
=> 2ACB = BIE + BEI
=> BIE = DCI
Lại có: DIC = BIE (đối đỉnh) => DIC = DCI => △DIC cân
=> DI = DC
Mà DI = BI => DC = BI
Có: AC = AD + DC
=> AC = AB + IB (đpcm)
Nhật Hạ, Sao BIE lại = DCI vậy bn