K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2020

S=2+22+23+24+....+299+2100

  =(2+22+23) + ( 24+25+26) + ......+ ( 288+299+2100)

  = 2.14+24.14+....+288.14

  = 14.( 2+24+....+288) Chia hết cho 14

Vậy S chia hết cho 14

S=1+2+22+23+.....+297+298+299

S=20+2+22+23+.....+297+298+299

2S=2.(20+2+22+23+.....+297+298+299)

2S=21+22+23+24+....+298+299+2100

2S-S=(21+22+23+24+....+298+299+2100)-(20+2+22+23+.....+297+298+299)

S=2100-20

S=2100-1

bS=1+2+22+23+.....+297+298+299

 S=(1+2)+(22+23)+...+(296+297)+(298+299)

S=(1+2)+22.(1+2)+........+296.(1+2)+298.(1+2)

S=3+22.3+....+296.3+298.3

S=3.(1+22+.....+296+298)\(⋮\)3

Vậy S\(⋮\)

c Ta có:S=2100-1

2100=24.25=(24)25

Ta có: 24 tân cùng là 6

=>(24)25 tận cùng là 6

Hay 2100=(24)25 tận cùng là 6

=>2100-1 tận cùng là 5

Vậy S tận cùng là 5

Chúc bn học tốt

15 tháng 12 2018

Câu 1,

\(S=1+2+2^2+...+2^7\)

\(=\left(1+2\right)+2^2\left(1+2\right)+2^4\left(1+2\right)+2^6\left(1+2\right)\)

\(=3+2^2.3+2^4.3+2^6.3\)

\(=3\left(1+2^2+2^4+2^6\right)⋮3\)

Nên S chia hết cho 3

Câu 2 ,

\(A=5+5^2+5^3+...+5^{20}\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{19}\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{19}.6\)

\(=6\left(5+5^3+...+5^{19}\right)⋮6\)

Nên A chia hết cho 6

15 tháng 12 2018

\(S=1+2+2^2+2^3+....+2^7\)

\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^6+2^7\right)\)

\(S=3+2^2.\left(1+2\right)+.....+2^6.\left(1+2\right)\)

\(S=3+2^2.3+.....+2^6.3\)

\(\Rightarrow S=3.\left(1+2^2+...+2^6\right)\)

\(\Rightarrow S⋮3\)

23 tháng 1 2016

bài 1 :

a) S1=( 1 + 3 - 5 - 7 )+(9+11-13-15)+...+(393+395-397-399)

S1=(-8)+(-8)+...+(-8)

S1=(-8)*199

S1=-1592

b)S2=(1-2-3+4)+( 5 - 6 - 7 +8)+...+( 97 - 98 - 99 + 100)

S2=0+0+...+0

S2=0*100

S2=0

 phần c và d tương tự nhé

BÀI 2

c)<=>2(x-1)+4 chia hết x-3

=>8 chia hết x-3

=>x-3\(\in\){-1,-2,-4,-8,1,2,4,8}

=>x\(\in\){2,1,-1,-5,4,5,7,11}

 

23 tháng 1 2016

hoắt tờ phắc dài thế

tôi làm từng phần 1 nhé

13 tháng 10 2018

\(S=1+2+2^2+...+2^{99}\)

\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)

\(S=3+2^2.3+...+2^{98}.3\)

\(=3\left(1+2^2+...+2^{98}\right)⋮3\)

11 tháng 10 2020

a) Ta có: 

\(S=1+2+2^2+...+2^{119}\)

\(S=\left(1+2+2^2+2^3\right)+\left(2^3+2^4+2^5+2^6\right)+...+\left(2^{116}+2^{117}+2^{118}+2^{119}\right)\)

\(S=\left(1+2+2^2+2^3\right)+2^3\cdot\left(1+2+2^2+2^3\right)+...+2^{116}\cdot\left(1+2+2^2+2^3\right)\)

\(S=15+15\cdot2^3+...+15\cdot2^{116}\)

\(S=15\cdot\left(1+2^3+...+2^{116}\right)\) chia hết cho 5

b) \(S=1+2+2^2+...+2^{119}\)

\(\Rightarrow2S=2+2^2+2^3+...+2^{120}\)

\(\Rightarrow2S-S=\left(2+2^2+...+2^{120}\right)-\left(1+2+...+2^{119}\right)\)

\(\Leftrightarrow S=2^{120}-1\)

\(\Leftrightarrow2^n=S+1=2^{120}\)

\(\Rightarrow n=120\)

7 tháng 12 2018

Ai cóp py mạng mk bt ngay

7 tháng 12 2018

1/ \(3+3^2+3^3+...+3^{99}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...\left(3^{98}+3^{99}\right)\)

\(=1\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{97}\left(3+3^2\right)\)

\(=12\left(1+3^2+...+3^{97}\right)⋮12^{\left(đpcm\right)}\)