K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2021

câu 1:thuộc tập hợp (trứng,gà)
câu 2:nếu họ bảo khoan,thì có hai trường hợp:1 là không khoan 2 là khoan
câu 3:cả 2 giống nhau

^^

-Mik nghĩ là do vài con khủng long nào đấy bị đột biến gen nên tạo ra gà.

-Ông ấy bảo ''khoan'' là dừng nha, vì mọi người đang khoan tường nên ko thể nào là tiếp tục khoan đc, khi mọi người đang ko khoan mà ông í bảo ''khoan'' thì mới là tiếp tục khoan nhaa.

-Mik nghĩ là do quả cam có màu cam nên đc gọi là quả cam. 

10 tháng 12 2021

TL
Mỗi người 3/4 quả cam

Khi nào rảnh vào kênh H-EDITOR xem vid nha!!! Thanks!

10 tháng 12 2021

1 người được 3/4 hay 0,75 quả táo.quá ư là dễ ,lớp 5 học rồi mà!!!

1 + 12345678910 = 12345678911.

Xin lỗi mình không biết.

1 tháng 5 2019

\(1+12345678910\)

\(=12345678911\)

18 tháng 12 2019

1 quả mk ko chắc

bai toan cuc kho luon nha

Ai giải được hết mình k nhé!!6:2(1+2)=???9+100: 1000(2367+9870)=???1+2+3+........+1000(19876-226381)=???30 người ngồi quanh một bàn tròn 30 chiếc ghế đánh số theo thứ tự từ 1 đến 10. Một số trong họ là hiệp sĩ, một số là kẻ lừa dối. Hiệp sĩ luôn nói thật còn kẻ lừa dối nói dối.Mỗi người có đúng một người bạn trong số những người khác. Hơn nữa, bạn của hiệp sĩ là kẻ lừa dối và bạn...
Đọc tiếp

Ai giải được hết mình k nhé!!

6:2(1+2)=???

9+100: 1000(2367+9870)=???

1+2+3+........+1000(19876-226381)=???

30 người ngồi quanh một bàn tròn 30 chiếc ghế đánh số theo thứ tự từ 1 đến 10. Một số trong họ là hiệp sĩ, một số là kẻ lừa dối. Hiệp sĩ luôn nói thật còn kẻ lừa dối nói dối.

Mỗi người có đúng một người bạn trong số những người khác. Hơn nữa, bạn của hiệp sĩ là kẻ lừa dối và bạn của kẻ lừa dối là hiệp sĩ.

Mỗi người đều được hỏi: "Có phải bạn của anh đang ngồi cạnh anh không?". 15 người ngồi ở vị trí lẻ trả lời: "Đúng".

Tìm số người ngồi ở vị trí chẵn cũng trả lời: "Đúng".

 

“Một sợi dây được quấn đối xứng đúng 4 vòng quanh một ống trụ tròn đều. Ống trụ có chu vi 4 cm và độ dài là 12 cm.

Hỏi: Sợi dây dài bao nhiêu cm?  Hãy giải thích cụ thể cách làm của bạn”.

3
29 tháng 5 2019

Tất cả các bài này lun á. Thôi thì em xin đầu hàng.

Hok tốt !

Em làm ko nổi đâu !

29 tháng 5 2019

 Thôi ,một bài còn đc chứ ... từng này thì thôi  -__-

3 tháng 3 2019

Tiểu thuyết là một thể loại văn xuôi có hư cấu, thông qua nhân vật, hoàn cảnh, sự việc để phản ánh bức tranh xã hội rộng lớn và những vấn đề của cuộc sống con người, biểu hiện tính chất tường thuật, tính chất kể chuyện bằng ngôn ngữ văn xuôi theo những chủ đề xác định.

Đam mỹ  là thể loại tiểu thuyết lãng mạn khai thác chủ đề đồng tính luyến ái nam, thường có xuất xứ từ Trung Quốc, lấy bối cảnh Trung Quốc và hòa trộn nhiều yếu tố văn hóa Trung Quốc.  Thể loại này hướng tới độc giả nữ.

3+3=6

tiểu thuyết là thể loai văn xuôi hư cấu

đam mỹ là tình yêu của 2 đứa con trai đc gọi là BJ(gần nhà mik cũng có~)

#chacvay#

Câu 1: Bỏ ngoài nướng trong, ăn ngoài bỏ trong là gì?Câu 2: Bà đó bả chết bả bay lên trời. Hỏi bà ấy chết năm bao nhiêu tuổi và tại sao bà ấy chết?Câu 3:  Lịch nào dài nhất?Câu 4: Con gì ăn lửa với nước than?Câu 5 Con đường dài nhất là đường nào?Câu 6: Con kiến bò lên tai con voi, nói gì với con voi mà ngay tức khắc con voi nằm lăn ra chết?Câu 7: Cái gì đen khi bạn mua nó, đỏ khi...
Đọc tiếp

Câu 1: Bỏ ngoài nướng trong, ăn ngoài bỏ trong là gì?

Câu 2: Bà đó bả chết bả bay lên trời. Hỏi bà ấy chết năm bao nhiêu tuổi và tại sao bà ấy chết?

Câu 3:  Lịch nào dài nhất?

Câu 4: Con gì ăn lửa với nước than?

Câu 5 Con đường dài nhất là đường nào?

Câu 6: Con kiến bò lên tai con voi, nói gì với con voi mà ngay tức khắc con voi nằm lăn ra chết?

Câu 7: Cái gì đen khi bạn mua nó, đỏ khi dùng nó và xám xịt khi vứt nó đi?

Câu 8: Có 1 chiếc thuyền tối đa là chỉ chở được hai người, nếu thêm người thứ 3 sẽ bị chìm ngay lập tức. Hỏi tại sao người ta trông thấy trên chiếc thuyền đó có ba thằng Mỹ đen và ba thằng Mỹ trắng ngồi trên chiếc thuyền đó mà ko bị chìm?

Câu 9: Con gì đập thì sống, không đập thì chết?

Câu 10: Nắng ba năm tôi không bỏ bạn, mưa 1 ngày sao bạn lại bỏ tôi là cái gì?

 

3
3 tháng 9 2021

Câu1 bắp ngô

câu 3 lịch sử 

câu 7 cục than 

3 tháng 9 2021

Câu 2 bà chết năm 73 tuổi vì bị bò đá 

– Có 5 ngôi nhà được sơn với 5 màu sắc khác nhau.– Mỗi ngôi nhà lại có một người đàn ông sinh sống.– Mỗi người đàn ông đó lại mang một quốc tịch khác nhau.– Mỗi người uống một loại đồ uống, hút một loại thuốc và có nuôi một con thú cưng khác nhau.Điều cần lưu ý ở đây là không ai trong số 5 người họ uống đồ uống, hút thuốc và nuôi thú cưng giống nhau cả.Một số gợi...
Đọc tiếp

– Có 5 ngôi nhà được sơn với 5 màu sắc khác nhau.

– Mỗi ngôi nhà lại có một người đàn ông sinh sống.

– Mỗi người đàn ông đó lại mang một quốc tịch khác nhau.

– Mỗi người uống một loại đồ uống, hút một loại thuốc và có nuôi một con thú cưng khác nhau.

Điều cần lưu ý ở đây là không ai trong số 5 người họ uống đồ uống, hút thuốc và nuôi thú cưng giống nhau cả.

Một số gợi ý:

1. Người Anh sống trong ngôi nhà màu đỏ.

2. Người Thụy Điển nuôi chó.

3. Người Đan Mạch thích uống trà.

4. Ngôi nhà màu xanh lá nằm bên trái ngôi nhà màu trắng.

5. Chủ nhà ngôi nhà xanh lá thích uống cà phê.

6. Người hút thuốc lá Pall Mall nuôi chim.

7. Chủ nhà màu vàng hút thuốc lá Dunhill.

8. Người sống trong ngôi nhà chính giữa phố thích uống sữa.

9. Người Na Uy sống trong ngôi nhà đầu tiên.

10. Người hút thuốc lá Blends sống cạnh người nuôi mèo.

11. Người nuôi ngựa sống cạnh người hút thuốc lá Dunhill.

12. Người hút thuốc Blue Master thích uống bia.

13. Người Đức hút thuốc lá Prince.

14. Người Na Uy sống cạnh ngôi nhà màu xanh dương.

15. Người hút thuốc lá Blends có người hàng xóm thích uống nước.

Câu hỏi đưa ra: Ai là người nuôi cá?

1

Để giải được bài này thì bạn nên kẻ một cái bảng với 5 cột, 5 dòng, mỗi dòng sẽ ứng với một thông tin gợi ý. Rồi sau đó bạn điền các thông tin mà họ đã cho vào bảng, tiếp tục sử dụng các gợi ý, phép thử, loại trừ để tìm ra các manh mối còn lại. Và đáp án đúng cuối cùng là:

-Người đàn ông Na Uy sống trong ngôi nhà màu vàng, uống nước, hút thuốc lá Dunhill và có một con mèo.

-Người đàn ông Đan Mạch sống trong ngôi nhà màu xanh, uống trà, hút thuốc lá Blends và có một con ngựa.

-Người đàn ông Anh sống trong ngôi nhà màu đỏ, uống sữa, hút thuốc lá Pall Mall và có một con chim.

-Người đàn ông Đức sống trong ngôi nhà màu xanh lá cây, uống cà phê, hút thuốc lá Prince và có một con cá.

-Người đàn ông Thụy Điển sống trong ngôi nhà màu trắng, uống bia, hút thuốc lá BlueMaster và có một con chó.

Vậy người đàn ông Đức là người nuôi cá.

Yeah! Hok tốt^^

30 tháng 4 2019

Milk lộn toán hình nhé!

30 tháng 4 2019

Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).

Khi đó :

         A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)  A=(0;0;a)B=(a;0;a)D=(0;a;a)C=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)

          P=(a;a2;a)P=(a;a2;a)

a) Ta có AP=(a;a2;a)AP→=(a;a2;a)

                       BC=(0;a;a).BC′→=(0;a;a).

Gọi αα là góc giữa hai đường thẳng APAP và BCBC′ ta có :

         cosα=0+a22+a2a2+a22+a2.a2+a2=12α=45ocos⁡α=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o

b) Ta có : AP=(a;a2;a)AP→=(a;a2;a)AB=(a;0;0),AC=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)

[AP,AB]=(a2a00;aa0a;aa2a0)=(0;a2;a22)[AP,AB].AC=0+a3a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.

Vậy VAPBC=16[AP,AB].AC=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312. 

QUẢNG CÁO

c) Mặt phẳng (ADCB)(A′D′CB) song song với trục Oy nên có phương trình :

       px+qz+n=0px+qz+n=0 (n0,p2+q2>0).(n≠0,p2+q2>0).

Vì mặt phẳng này đi qua A,B,CA′,B,C nên ta xác định được p = q và n = -pa.

Cho p = 1, ta được phương trình mp(ADCB)(A′D′CB) là x+za=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là n=(1;0;1).n→=(1;0;1).

Từ giả thiết MAD,NDB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :

                      M=(0;k2;k2),N=(k2;a2k2;0).M=(0;k2;k2),N=(k2;a2−k2;0).

Suy ra −−MN=(k2;a22k2;k2).MN→=(k2;a2−2k2;–k2).

Ta có −−MN.n=1.k2+0(a22k2)+1.(k2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0

−−MNn.⇒MN→⊥n→.

Rõ ràng Nmp(ADCB).N∉mp(A′D′CB). Suy ra MN song song với mp(ADCB).(A′D′CB).

d) Ta có MN2=(k2)2+(a22k2)2+(k2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.

=3k22a2k+a2=3(ka23)2+a293a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.

MN2MN2 nhỏ nhất bằng a23a23 khi k=a23k=a23 (thoả mãn điều kiện 0<k<a20<k<a2 ).

Vậy MN ngắn nhất bằng a33a33 khi k=a23k=a23.

e) Khi MN ngắn nhất thì k=a23k=a23 Khi đó −−MN=(a3;a3;a3).MN→=(a3;a3;–a3).

Ta lại có AD=(0;a;a),DB=(a;a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−MN.AD=0,−−MN.DB=0.MN→.AD′→=0,MN→.DB→=0.

Vậy MN là đường vuông góc chung của AD’ và DB.

Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).

Khi đó :

         A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)  A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)

          P=(a;a2;a)P=(a;a2;a)

a) Ta có −−→AP=(a;a2;a)AP→=(a;a2;a)

                       −−→BC′=(0;a;a).BC′→=(0;a;a).

Gọi αα là góc giữa hai đường thẳng APAP và BC′BC′ ta có :

         cosα=∣∣0+a22+a2∣∣√a2+a22+a2.√a2+a2=1√2⇒α=45ocos⁡α=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o

b) Ta có : −−→AP=(a;a2;a)AP→=(a;a2;a), −−→AB=(a;0;0),−−→AC′=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)

⇒[−−→AP,−−→AB]=(∣∣∣a2a00∣∣∣;∣∣∣aa0a∣∣∣;∣∣∣aa2a0∣∣∣)=(0;a2;–a22)⇒[−−→AP,−−→AB].−−→AC′=0+a3–a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.

Vậy VAPBC′=16∣∣∣[−−→AP,−−→AB].−−→AC′∣∣∣=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312. 

QUẢNG CÁO

c) Mặt phẳng (A′D′CB)(A′D′CB) song song với trục Oy nên có phương trình :

       px+qz+n=0px+qz+n=0 (n≠0,p2+q2>0).(n≠0,p2+q2>0).

Vì mặt phẳng này đi qua A′,B,CA′,B,C nên ta xác định được p = q và n = -pa.

Cho p = 1, ta được phương trình mp(A′D′CB)(A′D′CB) là x+z–a=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là →n=(1;0;1).n→=(1;0;1).

Từ giả thiết M∈AD′,N∈DB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :

                      M=(0;k√2;k√2),N=(k√2;a√2−k√2;0).M=(0;k2;k2),N=(k2;a2−k2;0).

Suy ra −−−→MN=(k√2;a√2−2k√2;–k√2).MN→=(k2;a2−2k2;–k2).

Ta có −−−→MN.→n=1.k√2+0(a√2−2k√2)+1.(–k√2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0

⇒−−−→MN⊥→n.⇒MN→⊥n→.

Rõ ràng N∉mp(A′D′CB).N∉mp(A′D′CB). Suy ra MN song song với mp(A′D′CB).(A′D′CB).

d) Ta có MN2=(k√2)2+(a√2−2k√2)2+(–k√2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.

=3k2–2a√2k+a2=3⎡⎣(k–a√23)2+a29⎤⎦≥3a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.

MN2MN2 nhỏ nhất bằng a23a23 khi k=a√23k=a23 (thoả mãn điều kiện 0<k<a√20<k<a2 ).

Vậy MN ngắn nhất bằng a√33a33 khi k=a√23k=a23.

e) Khi MN ngắn nhất thì k=a√23k=a23 Khi đó −−−→MN=(a3;a3;–a3).MN→=(a3;a3;–a3).

Ta lại có −−→AD′=(0;a;a),−−→DB=(a;–a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−−→MN.−−→AD′=0,−−−→MN.−−→DB=0.MN→.AD′→=0,MN→.DB→=0.

Vậy MN là đường vuông góc chung của AD’ và DB.

Mặt khác −−→A′C=(a;a;–a)=3−−−→MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−−→MNMN→, −−→A′CA′C→ cùng phương. Do N∉A′CN∉A′C  nên MN//A′C.Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).

Khi đó :

         A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)  A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)

          P=(a;a2;a)P=(a;a2;a)

a) Ta có −−→AP=(a;a2;a)AP→=(a;a2;a)

                       −−→BC′=(0;a;a).BC′→=(0;a;a).

Gọi αα là góc giữa hai đường thẳng APAP và BC′BC′ ta có :

         cosα=∣∣0+a22+a2∣∣√a2+a22+a2.√a2+a2=1√2⇒α=45ocos⁡α=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o

b) Ta có : −−→AP=(a;a2;a)AP→=(a;a2;a), −−→AB=(a;0;0),−−→AC′=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)

⇒[−−→AP,−−→AB]=(∣∣∣a2a00∣∣∣;∣∣∣aa0a∣∣∣;∣∣∣aa2a0∣∣∣)=(0;a2;–a22)⇒[−−→AP,−−→AB].−−→AC′=0+a3–a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.

Vậy VAPBC′=16∣∣∣[−−→AP,−−→AB].−−→AC′∣∣∣=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312. 

QUẢNG CÁO

c) Mặt phẳng (A′D′CB)(A′D′CB) song song với trục Oy nên có phương trình :

       px+qz+n=0px+qz+n=0 (n≠0,p2+q2>0).(n≠0,p2+q2>0).

Vì mặt phẳng này đi qua A′,B,CA′,B,C nên ta xác định được p = q và n = -pa.

Cho p = 1, ta được phương trình mp(A′D′CB)(A′D′CB) là x+z–a=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là →n=(1;0;1).n→=(1;0;1).

Từ giả thiết M∈AD′,N∈DB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :

                      M=(0;k√2;k√2),N=(k√2;a√2−k√2;0).M=(0;k2;k2),N=(k2;a2−k2;0).

Suy ra −−−→MN=(k√2;a√2−2k√2;–k√2).MN→=(k2;a2−2k2;–k2).

Ta có −−−→MN.→n=1.k√2+0(a√2−2k√2)+1.(–k√2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0

⇒−−−→MN⊥→n.⇒MN→⊥n→.

Rõ ràng N∉mp(A′D′CB).N∉mp(A′D′CB). Suy ra MN song song với mp(A′D′CB).(A′D′CB).

d) Ta có MN2=(k√2)2+(a√2−2k√2)2+(–k√2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.

=3k2–2a√2k+a2=3⎡⎣(k–a√23)2+a29⎤⎦≥3a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.

MN2MN2 nhỏ nhất bằng a23a23 khi k=a√23k=a23 (thoả mãn điều kiện 0<k<a√20<k<a2 ).

Vậy MN ngắn nhất bằng a√33a33 khi k=a√23k=a23.

e) Khi MN ngắn nhất thì k=a√23k=a23 Khi đó −−−→MN=(a3;a3;–a3).MN→=(a3;a3;–a3).

Ta lại có −−→AD′=(0;a;a),−−→DB=(a;–a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−−→MN.−−→AD′=0,−−−→MN.−−→DB=0.MN→.AD′→=0,MN→.DB→=0.

Vậy MN là đường vuông góc chung của AD’ và DB.

Mặt khác −−→A′C=(a;a;–a)=3−−−→MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−−→MNMN→, −−→A′CA′C→ cùng phương. Do N∉A′CN∉A′C  nên MN//A′C.

Mặt khác AC=(a;a;a)=3−−MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−MNMN→ACA′C→ cùng phương. Do NACN∉A′C  nên MN//AC.Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).

Khi đó :

         A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)  A=(0;0;a)B=(a;0;a)D=(0;a;a)C=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)

          P=(a;a2;a)P=(a;a2;a)

a) Ta có AP=(a;a2;a)AP→=(a;a2;a)

                       BC=(0;a;a).BC′→=(0;a;a).

Gọi αα là góc giữa hai đường thẳng APAP và BCBC′ ta có :

         cosα=0+a22+a2a2+a22+a2.a2+a2=12α=45ocos⁡α=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o

b) Ta có : AP=(a;a2;a)AP→=(a;a2;a)AB=(a;0;0),AC=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)

[AP,AB]=(a2a00;aa0a;aa2a0)=(0;a2;a22)[AP,AB].AC=0+a3a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.

Vậy VAPBC=16[AP,AB].AC=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312. 

QUẢNG CÁO

c) Mặt phẳng (ADCB)(A′D′CB) song song với trục Oy nên có phương trình :

       px+qz+n=0px+qz+n=0 (n0,p2+q2>0).(n≠0,p2+q2>0).

Vì mặt phẳng này đi qua A,B,CA′,B,C nên ta xác định được p = q và n = -pa.

Cho p = 1, ta được phương trình mp(ADCB)(A′D′CB) là x+za=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là n=(1;0;1).n→=(1;0;1).

Từ giả thiết MAD,NDB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :

                      M=(0;k2;k2),N=(k2;a2k2;0).M=(0;k2;k2),N=(k2;a2−k2;0).

Suy ra −−MN=(k2;a22k2;k2).MN→=(k2;a2−2k2;–k2).

Ta có −−MN.n=1.k2+0(a22k2)+1.(k2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0

−−MNn.⇒MN→⊥n→.

Rõ ràng Nmp(ADCB).N∉mp(A′D′CB). Suy ra MN song song với mp(ADCB).(A′D′CB).

d) Ta có MN2=(k2)2+(a22k2)2+(k2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.

=3k22a2k+a2=3(ka23)2+a293a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.

MN2MN2 nhỏ nhất bằng a23a23 khi k=a23k=a23 (thoả mãn điều kiện 0<k<a20<k<a2 ).

Vậy MN ngắn nhất bằng a33a33 khi k=a23k=a23.

e) Khi MN ngắn nhất thì k=a23k=a23 Khi đó −−MN=(a3;a3;a3).MN→=(a3;a3;–a3).

Ta lại có AD=(0;a;a),DB=(a;a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−MN.AD=0,−−MN.DB=0.MN→.AD′→=0,MN→.DB→=0.

Vậy MN là đường vuông góc chung của AD’ và DB.

Mặt khác AC=(a;a;a)=3−−MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−MNMN→ACA′C→ cùng phương. Do NACN∉A′C  nên MN//AC.