Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ủa bạn? mình làm không được mình mới gửi lên nhờ giúp, còn nói ảnh gì thì mình không biết
2 câu trả lời ở đâu vậy bạn??? :V
( có cc a giải cho nhé
Thân )
a) Chứng minh : BHCK là hình bình hành
Xét tứ giác BHCK có : MH = MK = HK/2
MB = MI = BC/2
Suy ra : BHCK là hình bình hành
b) BK vuông góc AB và CK vuông góc AC
Vì BHCK là hình bình hành ( cmt )
Suy ra : BK // HC và CK // BH ( tính chất hình bình hành )
mà CH vuông góc AB = F và BH vuông góc AC = E ( gt )
Suy ra : BK vuông góc AB và CK vuông góc AC ( Từ vuông góc đến // )
c) Chứng minh : BIKC là hình thang cân
Vì I đối xứng với H qua BC nên BC là đường trung bình của HI
Mà M thuộc BC Suy ra : MH = MI ( tính chất đường trung trực )
mà MH = MK = HK/2 (gt)
Suy ra : MI = MH = MK = 1/2 HC
Suy ra : Tam giác HIK vuông góc tại I
mà BC vuông góc HI (gt)
Suy ra : IC // BC
Suy ra : BICK là hình thang (1)
Ta có : BC là đường trung trực của HI (cmt)
Suy ra : CI = CH
Tiếp ý c
mà CH = BK ( vì BKCH là hình bình hành)
Suy ra : BK = CI (2)
Từ ( 1) và (2) Suy ra : BICK là hình thang cân (dấu hiệu nhận biết )
d) Giả sử GHCK là hình thang cân
Suy ra : Góc HCK = Góc GHC
mà góc HCK + góc C1 = 90 độ
góc GHC + góc C2 = 90 độ
Suy ra : Góc C1= góc C2
Suy ra : CF là đường cao đồng thời là đường phân giác của tam giác ABC
Suy ra : Tam giác ABC cân tại C
A B C D H I
Xét \(\Delta IHB\)có IA vừa là đường cao vừa là trung tuyến nên cân tại I, nên IA đồng thời là được phân giác
\(\Rightarrow\widehat{AIB}=\widehat{AIH}\)
Mà \(\widehat{AIH}=\widehat{DIC}\)( Đối đỉnh )
\(\Rightarrow\widehat{AIB}=\widehat{DIC}\)
Vậy ...
A B C D E F N I M K G
a) AM//CD. Theo định lí Ta-let, ta có: \(\frac{IM}{ID}=\frac{AI}{IC}\)( 1 )
AD//CN. Theo định lí Ta-let, ta có : \(\frac{IA}{IC}=\frac{ID}{IM}\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(\frac{IM}{ID}=\frac{ID}{IN}\Rightarrow ID^2=IM.IN\)
b) Ta có : \(\frac{DM}{MN}=\frac{AM}{MB}\Rightarrow\frac{DM}{DM+MN}=\frac{AM}{AM+MB}\)
do đó : \(\frac{DM}{DN}=\frac{AM}{AB}\)( 3 )
Mà ID = IK ; ID2 = IM.IN
\(\Rightarrow IK^2=IM.IN\)\(\Rightarrow\frac{IK}{IM}=\frac{IN}{IK}\Rightarrow\frac{IK-IM}{IM}=\frac{IN-IK}{IK}\)
Do đó : \(\frac{MK}{IM}=\frac{KN}{IK}\Rightarrow\frac{KM}{KN}=\frac{IM}{IK}=\frac{IM}{ID}=\frac{AM}{CD}=\frac{AM}{AB}\)( 4 )
Từ ( 3 ) và ( 4 ) suy ra \(\frac{DM}{DN}=\frac{KM}{KN}\)
c) \(\Delta AGB~\Delta AEC\left(g.g\right)\)\(\Rightarrow\frac{AB}{AG}=\frac{AC}{AE}\Rightarrow AB.AE=AC.AG=AG\left(AG+GC\right)\)( 5 )
\(\Delta BGC~\Delta CFA\left(g.g\right)\)\(\Rightarrow\frac{AF}{GC}=\frac{AC}{BC}=\frac{AC}{AD}\)
\(\Rightarrow AF.AD=AC.GC=GC\cdot\left(AG+GC\right)\)( 6 )
Cộng ( 5 ) và ( 6 ) theo vế, ta được :
\(AB.AE+AF.AD=AG\left(GC+AG\right)+GC\left(AG+GC\right)=\left(AG+GC\right)^2=AC^2\)
A M B N E C F D I G K
a/ Xét \(\Delta IMC\)có : MC // AD nên : \(\frac{IM}{ID}=\frac{IC}{IA}\)( hệ quả định lí Ta-let )
Xét \(\Delta IDC\)có : DC // AN nên : \(\frac{ID}{IN}=\frac{IC}{IA}\)( hệ quả định lí Ta-let )
Do đó : \(\frac{IM}{ID}=\frac{ID}{IN}\left(=\frac{IC}{IA}\right)\)
Vậy : \(IM.IN=ID^2\)
b/ Ta có : \(\frac{DM}{DN}=\frac{DM}{DM+MN}\)
\(=\frac{AD}{AD+NB}=\frac{AD}{CN}\)
\(=\frac{ID}{IN}=\frac{2.ID}{2.IN}\)
\(=\frac{KD}{KD+2.NK}\)
\(\Leftrightarrow\frac{DM}{DN}=\frac{KD}{DN+NK}\)
\(=\frac{KD-DM}{DN+NK-DN}=\frac{KM}{KN}\left(đpcm\right)\)
c) Xét \(\Delta ABG\)và\(\Delta ACE\)có :
\(\widehat{AGB}=\widehat{AEC}\left(=90^0\right)\)
\(\widehat{A}:chung\)
=> tam giác AGB = tam giác ACE ( cgv-gn )
\(\Rightarrow\frac{AB}{AG}=\frac{AC}{AE}\)
\(\Rightarrow AB.AE=AC.AG\)
CM tương tự,ta có : \(\Delta BCG\)đồng dạng với \(\Delta ACF\)
\(\Rightarrow\frac{BC}{GC}=\frac{AC}{AF}\)
\(\Rightarrow AC.AF=AC.GC\)
\(\Rightarrow AD.AF=AC.AG\)( vì AD = BC )
Do đó : \(AB.AE+AD.AF=AC.AG+AC.GC\)
\(\Rightarrow AB.AE+AD.AF=AC.\left(AG+GC\right)\)
\(\Rightarrow AB.AE+AD.AF=AC.AC\)
Vậy AB.AE + AD.À = AC2