Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai rồi bạn nhé, phải là:
Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng với D qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng với D qua AC, F là giao điểm của DN và AC.
a. Tứ giác AEDF là hình gì ? Vì sao ?
b. Các tứ giác ADBM, ADCN là hình gì ? Vì sao ?
c. Chứng minh rằng M đối xứng với N qua A
d. Tam giác vuông ABC có điều kiện gì thì tứ giác AEDF là hình vuông ?
tớ chép đúng y như thầy giáo đọc nên mk cx trả biết sai hay đúng
câu 1
a) ta có MF // AB,BA vuông góc AC=> MF vuông góc AC=> MFA=90 độ
tương tự góc EAF=90 độ
tứ giác AEMF có góc EAF=MFA=AEM =90 độ=> tứ giác AEMF là hcn
b) tam giác ABC co AM la T tuyến ung voi canh huyền BC=> AM=1/2BC,MC=1/2BC=> AM=MC=> tam giác AMC cân tai M
=> MF là T tuyến => Flà tđ cua AC
xét tam giác MAC=> DF là đtb cua tam giác AMC => DF//AM=> DF//OM (1)
tương tự OF // MD (2)
từ (1),(2) => T giác OMDF là hbh (3)
ta lai co OM=1/2AM,MD=1/2MC mà AM=MC => OM=DM (4)
từ (3),(4) => T giác OMDF la hình thoi
c) ta có tam giác ABC vuông can tai A=> góc BCA=45 độ
mà góc BCA= MAC=góc MAC =45 dộ=> tam giác MFA vuông can tai F
áp dung Pitago => AF=2 căn 2 cm, ma AF=FM=> AF=FM=2 căn 2 cm
diện tích AEMF=AF.FM=2cAn 2.2can 2=8 cm vuông
sai đầu bài rồi bạn ơi
đúng mà