K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

Bài 1:

Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c

<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1

Sai rồi em ơi 2 trường hợp cơ 

+, bằng -1

+, bằng 2

26 tháng 3 2019

Câu hỏi của Hà My Trần - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo câu hỏi ở link này.

25 tháng 1 2019

Ta có : \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{a-c}{\left(a-b\right)\left(a-c\right)}-\frac{a-b}{\left(a-b\right)\left(a-c\right)}\)

\(=\frac{1}{a-b}-\frac{1}{a-c}=\frac{1}{a-b}+\frac{1}{c-a}\left(1\right)\)

Tương tự ta cũng chứng minh được :

\(\hept{\begin{cases}\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}+\frac{1}{a-b}\left(2\right)\\\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{b-c}\left(3\right)\end{cases}}\)

Từ (1), (2), (3), suy ra : \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)

\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\left(đpcm\right)\)

25 tháng 1 2019

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{c-a+a-b}{\left(a-b\right)\left(c-a\right)}\)=\(\frac{1}{a-b}+\frac{1}{c-a}\)

Tuong tu => DPCM

Bạn tham khảo ở đây : https://olm.vn/hoi-dap/detail/66012452128.html

3 tháng 12 2019

C1 : \(\text{Đặt }\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\Rightarrow VT=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\left(1\right)\)

\(VP=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) => đpcm

31 tháng 10 2016

Ta có : \(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}=\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)

\(=>\frac{\left(a-c\right)^2}{16}=\left(\frac{a-b}{-2}\right).\left(\frac{b-c}{-2}\right)=\frac{\left(a-b\right).\left(b-c\right)}{4}\)

\(=>\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)

31 tháng 10 2016

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{a}{2009}=\frac{b}{2011}=\frac{a-b}{2009-2011}=\frac{a-b}{-2}\)

\(\frac{b}{2011}=\frac{c}{2013}=\frac{b-c}{2011-2013}=\frac{b-c}{-2}\)

\(\frac{a}{2009}=\frac{c}{2013}=\frac{a-c}{2009-2013}=\frac{a-c}{-4}\)

=> \(\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)

=> \(\frac{a-b}{-2}.\frac{b-c}{-2}=\left(\frac{a-c}{4}\right)^2\)

=> \(\frac{\left(a-c\right)^2}{4^2}=\frac{\left(a-b\right)\left(b-c\right)}{4}\)

=> \(\frac{\left(a-c\right)^2}{4}=\left(a-c\right)\left(b-c\right)\)

31 tháng 10 2016

Ta có : \(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}=\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)

\(=>\frac{\left(a-c\right)^2}{16}=\left(\frac{a-b}{-2}\right).\left(\frac{b-c}{-2}\right)=\frac{\left(a-b\right).\left(b-c\right)}{4}\)

\(=>\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)

28 tháng 8 2015

Áp dụng tính chất dãy tỉ số bằng nhau ta có:


\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{\left(a+b+c+a+b+c\right)-\left(a+b+c\right)}{a+b-c}=\frac{a+b+c}{a+b+c}=1\)

\(=>\frac{a+b-c}{c}=1=>a+b-c=c=>a+b=c+c=2c\)

\(=>\frac{a-b+c}{b}=1=>a-b+c=b=>a+c=b+b=2b\)

\(=>\frac{-a+b+c}{a}=1=>-a+b+c=a=>b+c=a+a=2a\)

\(=>M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=\frac{8.abc}{abc}=8\)

Vậy M=8

28 tháng 8 2015

Minh Triều @@ trời ạ 

27 tháng 7 2020

Bài làm:

Ta có: \(ab.bc=\frac{3}{5}.\frac{4}{5}\Leftrightarrow ab^2c=\frac{12}{25}\)

\(\Rightarrow ab^2c\div ac=\frac{12}{25}\div\frac{3}{4}\)

\(\Rightarrow b^2=\frac{16}{25}\Leftrightarrow b=\pm\frac{4}{5}\)

Thay vào ta tính được a và b

b,c tương tự a

27 tháng 7 2020

a, \(ab.bc.ca=\frac{3}{4}.\frac{4}{5}.\frac{3}{4}\)

\(\left(a.b.c\right)^2=\left(\frac{3}{5}\right)^2\)

\(a.b.c=\frac{3}{5}\)

\(\Rightarrow b=\frac{4}{5};c=1;a=\frac{3}{4}\)

b, \(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=-12+18+30\)

\(\Rightarrow\left(a+b+c\right).\left(a+b+c\right)=36\)

\(\Rightarrow\left(a+b+c\right)^2=36\)

\(\hept{\begin{cases}a+b+c=6\\a+b+c=-6\end{cases}}\)

Nếu a + b + c = 6 \(\Rightarrow\)a = - 2 b = 3 c=5

Nếu a + b + c = - 6 \(\Rightarrow\)a = 2 , b = -3 c = -5

c,ab=c => a=c/b (1) 

bc=4a => a=(bc)/4 (2) 

Từ (1) và (2) => c/b = (bc)/4 

<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2 

(*) Với b=2 thì 

(1) => a=c/2 <=> c=2a:

ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3 

_ Với a=3 thì c= 2*3 = 6 (thỏa) 

_Với a=-3 thì c= 2*-3 =-6 (thỏa) 

(*) Với b=-2 thì 

(1) => a=c/-2 <=> c=-2a 

Ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3 

_ Với a=3 thì c= -2*3 = -6 (thỏa) 

_Với a=-3 thì c= -2*-3 =6 (thỏa) 

Vậy S= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) }