Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\text{*}\right)\) Tìm giá trị lớn nhất của biểu thức sau:
Ta có:
\(A=\frac{x^2+1}{x^2-x+1}=\frac{2\left(x^2-x+1\right)-\left(x^2-2x+1\right)}{x^2-x+1}=2-\frac{\left(x-1\right)^2}{x^2-x+1}\le2\) với mọi \(x\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\left(x-1\right)^2=0\) \(\Leftrightarrow\) \(x-1=0\) \(\Leftrightarrow\) \(x=1\)
Vậy, \(A_{max}=2\) \(\Leftrightarrow\) \(x=1\)
-------------------------------------------------
\(B=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\) với mọi \(x\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\left(2x+1\right)^2=0\) \(\Leftrightarrow\) \(2x+1=0\) \(\Leftrightarrow\) \(x=-\frac{1}{2}\)
Vậy, \(B_{max}=4\) \(\Leftrightarrow\) \(x=-\frac{1}{2}\)
____________________________________
\(\left(\text{*}\text{*}\right)\) Tìm giá trị nhỏ nhất của biểu thức sau:
Từ \(A=\frac{x^2+1}{x^2-x+1}\)
\(\Rightarrow\) \(3A=\frac{3x^2+3}{x^2-x+1}=\frac{\left(x^2+2x+1\right)+2\left(x^2-x+1\right)}{x^2-x+1}=\frac{\left(x+1\right)^2}{x^2-x+1}+2\ge2\) với mọi \(x\)
Vì \(3A\ge2\) nên \(A\ge\frac{2}{3}\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\left(x+1\right)^2=0\) \(\Leftrightarrow\) \(x+1=0\) \(\Leftrightarrow\) \(x=-1\)
Vậy, \(A_{min}=\frac{2}{3}\) \(\Leftrightarrow\) \(x=-1\)
Câu b) tự giải
\(A=16-2x-x^2\)
\(A=-x^2-2.x.1-1+17\)
\(A=-\left(x^2+2.x.1+1\right)+17\)
\(A=-\left(x+1\right)^2+17\le17\)
Dấu = xảy ra khi :
\(x+1=0\Leftrightarrow x=-1\)
Vậy A max = 17 tại x = -1