Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) (3x-2).(4x+5)-6x.(2x-1) = 12x^2 +15x - 8x -10 - 12x^2 + 6x = 13x - 10
b) (2x-5)^2 - 4.(x+3).(x-3) = 4x^2 - 20x + 25 - 4x^2 + 12x -12x + 36 = -20x + 61
Bài 2:
a)(2x-1)^2-(x+3)^2 = 0
<=> (2x-1-x-3).(2x-1+x+3) =0
<=>(x-4).(3x+2) = 0
<=> x-4 = 0 hoặc 3x+2=0
*x-4=0 => x=4
*3x+2 = 0 => 3x=-2 => x=-2/3
b)x^2(x-3)+12-4x=0 <=> x^2(x-3) - 4(x-3) =0 <=> (x-3).(x-2)(x+2) <=> x-3=0 hoặc x-2=0 hoặc x+2 =0
*x-3=0 => x=3
*x-2=0 =>x=2
*x+2=0 =>x=-2
c) 6x^3 -24x =0 <=> 6x(x^2 -4)=0 <=> 6x(x-2)(x+2)=0 <=> x=0 hoặc x-2 =0 hoặc x+2=0 <=> x=0 hoặc x=2 hoặc x=-2
đề là gì
a)\(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}3x-2=0\\x+6=0\\x^2+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x=2\\x=-6\\x^2=-5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2}{3}\\x=-6\\x\in\varnothing\end{cases}}}\)
vậy x=2/3 hoặc x=-6
a, (3x-2) (x+6) (x^2 +5) = 0
<=> 3x - 2 = 0 hoặc x + 6 = 0 hoặc x2 + 5 = 0 (loại vì x2 \(\ge\)0 => x2 + 5 > 0)
<=> x = 2/3 hoặc x = -6
b, (2x+5)^2 = (3x-1)^2
<=> (2x + 5)2 - (3x - 1)2 = 0
<=> (2x + 5 - 3x + 1)(2x + 5 + 3x - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}2x-3x+6=0\\2x+3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}-x=-6\\5x=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=6\\x=\frac{4}{5}\end{cases}}}\)
c, 4x2 (x-1) - x+1 = 0
<=> 4x2(x - 1) - (x - 1) = 0
<=> (x - 1)(4x2 - 1) = 0
<=> (x - 1)(2x - 1)(2x + 1) = 0
vậy x - 1 = 0 hoặc 2x - 1 = 0 hoặc 2x + 1 = 0
hay x = 1 hoặc x = 1/2 hoặc x = -1/2
a) ( x - 1 )( 2x + 1 ) + 3( x - 1 )( x + 2 )( 2x + 1 )
= ( x - 1 )( 2x + 1 )[ 1 + 3( x + 2 ) ]
= ( x - 1 )( 2x + 1 )( 1 + 3x + 6 )
= ( x - 1 )( 2x + 1 )( 3x + 7 )
b) ( 6x + 3 ) - ( 2x - 5 )( 2x + 1 )
= 3( 2x + 1 ) - ( 2x - 5 )( 2x + 1 )
= ( 2x + 1 )[ 3 - ( 2x - 5 ) ]
= ( 2x + 1 )( 3 - 2x + 5 )
= ( 2x + 1 )( 8 - 2x )
= 2( 2x + 1 )( 4 - x )
c) ( x - 5 )2 + ( x + 5 )( x - 5 ) - ( 5 - x )( 2x + 1 )
= ( x - 5 )2 + ( x + 5 )( x - 5 ) + ( x - 5 )( 2x + 1 )
= ( x - 5 )[ ( x - 5 ) + ( x + 5 ) + ( 2x + 1 ) ]
= ( x - 5 )( x - 5 + x + 5 + 2x + 1 )
= ( x - 5 )( 4x + 1 )
d) ( 3x - 2 )( 4x - 3 ) - ( 2 - 3x )( x - 1 ) - 2( 3x - 2 )( x + 1 )
= ( 3x - 2 )( 4x - 3 ) + ( 3x - 2 )( x - 1 ) - 2( 3x - 2 )( x + 1 )
= ( 3x - 2 )[ ( 4x - 3 ) + ( x - 1 ) - 2( x + 1 ) ]
= ( 3x - 2 )( 4x - 3 + x - 1 - 2x - 2 )
= ( 3x - 2 )( 3x - 6 )
= 3( 3x - 2 )( x - 2 )
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
Câu 1.
B = ( 3x + 5 )( 2x + 1 ) + ( 4x - 1 )( 3x + 2 )
= 6x2 + 3x + 10x + 5 + 12x2 + 8x - 3x - 2
= 18x2 + 18x + 3
| x | = 2 => x = ±2
Với x = 2 => B = 18.22 + 18.2 + 3 = 111
Với x = -2 => B = 18.(-2)2 + 18.(-2) + 3 = 39
C = ( 2x + y )( 2x + y ) + ( x - y )( y - z )
= 4x2 + 4xy + y2 + xy - xz - y2 + yz
= 4x2 + 5xy - xz + yz
Với x = 1 ; y = 1 ; z = 1 => C = 4.12 + 5.1.1 - 1.1 + 1.1 = 9
Câu 2.
Gọi ba số tự nhiên cần tìm là a ; a + 1 ; a + 2 ( a ∈ N )
Theo đề bài ta có :
( a + 1 )( a + 2 ) - a( a + 1 ) = 50
<=> a2 + 3a + 2 - a2 - a = 50
<=> 2a + 2 = 50
<=> 2a = 48
<=> a = 24 ( tmđk )
=> a + 1 = 25 ; a + 2 = 26
Vậy ba số cần tìm là 24 ; 25 ; 26
Câu 3.
Sửa đề một chút : ( x + y )( x3 - x2y + xy2 - y ) = x4 - y4
( x + y )( x3 - x2y + xy2 - y3 )
= x4 - x3y + x2y2 - xy3 + x3y - x2y2 + xy3 - y4
= x4 - y4 ( đpcm )
Câu 1 :
\(a,B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)
\(=6x^2-3x+10x-5+12x^2+8x-3x-2\)
\(=\left(6x^2+12x^2\right)+\left(-3x+10x+8x-3x\right)+\left(-5-2\right)\)
\(=18x^2-4x-7\)
Với \(|x|=2\Rightarrow x=\pm2\)
Với x = 2 => \(B=18.2^2-4.2-7=72-8-7=57\)
Với x = -2 => \(B=18.\left(-2\right)^2-4.\left(-2\right)-7=73\)
Câu b tương tự
Câu 2 :
Gọi 3 số tự nhiên cần tìm là a , a+1 , a+2 .
Vì tích của hai số đầu hỏ hơn tích của hai số sau là 50 nên ta có :
\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)
\(\Leftrightarrow a^2+2a+a+2-a^2-a=50\)
\(\Leftrightarrow\left(a^2-a^2\right)+\left(a-a\right)+2a=50-2\)
\(\Leftrightarrow2a=48\)
\(\Leftrightarrow a=24\)
Vậy ba số tự nhiên cần tìm lần lượt là 24,25,26 .
Câu 3 :
Ta có :
\(\left(x+y\right)\left(x^3-x^2y+xy^2-y^3\right)\)
\(=x^4-x^3y+x^2y^2-xy^3+yx^3-x^2y^2+xy^3-y^4\)
\(=x^4+\left(-x^3y+yx^3\right)+\left(x^2y^2-x^2y^2\right)+\left(-xy^3+xy^3\right)-y^4\)
\(=x^4-y^4\)
=> đpcm