Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàng 1: (17+8)=5x5
Hàng 2: (13+7)=5x4
Hàng 3: (6+12)=6x3
Hàng 4: (10x6)=4x15
=> ?=15
Bài 1: 2017 - 2a < 2017 - 2b
<=> -2a < -2b
<=> 2a > 2b
<=> a > b
b) a > b
=> -2018a < -2018b
=> -2018a + 29 < -2018b + 29 ( đpcm)
Bài 2:
( x + 5) ( x - 5) > (x+2)2 + 4
=> x2 - 25 > x2 + 4x + 8
=> -4x > 33
=> x < -8,25
Bài 1: a) 2017 - 2a <2017 - 2b
⇒ -2a < -2b
⇒ a > b
b)-2018a + 29 < -2018b - 29
⇒ -2018a < - 2018b
⇒a > b (đpcm)
Bài 2:
(x+5) (x- 5) > (x+2)2 + 4
⇔ x2 - 5x + 5x - 25 > x2 + 4x + 4 + 4
⇔ x2 - 5x + 5x - x2 - 4x > 4+ 4+ 25
⇔ - 4x > 33
⇔x < -33/4
a)
\(\begin{array}{l}2x + 6 = 0\\\,\,\,\,\,\,\,2x = - 6\\\,\,\,\,\,\,\,\,\,\,x = \left( { - 6} \right):2\\\,\,\,\,\,\,\,\,\,\,x = - 3\end{array}\)
Vậy \(x = - 3\) là nghiệm của phương trình.
\( \to \) Chọn đáp án A.
b)
\(\begin{array}{l} - 3x + 5 = 0\\\,\,\,\,\,\, - 3x = - 5\\\,\,\,\,\,\,\,\,\,\,\,\,x = \left( { - 5} \right):\left( { - 3} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,x = \frac{5}{3}\end{array}\)
Vậy \(x = \frac{5}{3}\) là nghiệm của phương trình.
\( \to \) Chọn đáp án B.
c)
\(\begin{array}{l}\frac{1}{4}z = - 3\\\,\,\,\,z = \left( { - 3} \right):\frac{1}{4}\\\,\,\,\,z = - 12\end{array}\)
Vậy \(z = - 12\) là nghiệm của phương trình.
\( \to \) Chọn đáp án D.
d)
\(\begin{array}{l}2\left( {t - 3} \right) + 5 = 7t - \left( {3t + 1} \right)\\\,\,\,\,2t - 6 + 5 = 7t - 3t - 1\\\,\,\,\,\,\,\,\,\,\,\,\,2t - 1 = 4t - 1\\\,\,\,\,\,\,\,\,\,2t - 4t = - 1 + 1\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 2t = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,t = 0:\left( { - 2} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,t = 0\end{array}\)
Vậy \(t = 0\) là nghiệm của phương trình.
\( \to \) Chọn đáp án D.
e)
Với đáp án A:
Thay \(x = - 2\) vào phương trình \(x - 2 = 0\) ta được \( - 2 - 2 = - 4 \ne 0\)
Vậy \(x = - 2\) không là nghiệm của phương trình \(x - 2 = 0\).
Với đáp án B:
Thay \(x = - 2\) vào phương trình \(x + 2 = 0\) ta được \( - 2 + 2 = 0\)
Vậy \(x = - 2\) là nghiệm của phương trình \(x + 2 = 0\).
\( \to \) Chọn đáp án B
Dùng hằng đẳng thức số 1 : (a + b)2 với a = (2x -1) và b =(x+1)
(2x - 1) 2 + 2(2x-1) (x+1) + (x+1)2 = (2x -1 + x +1)2 = (3x)2 = 9x2
Cho bất phương trình - 4x + 12 > 0 . Phép biến đổi nào dưới đây đúng ?
- 4x + 12 < 0
<=> -4x < - 12
<=> 4x > 12
C
Khi x < 0 , kết quả rút gọn của biểu thức |- 4x| - 3x + 13 là :
\(\left|-4x\right|-3x+13=-4x-3x+13=-7x+13\)
=> D