K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2019

giúp mk với

đợi tý đc ko

26 tháng 3 2019

Có:a2/b2=c2/d2=ac/bd=>a2+ac/b2+bd=c2-ac/b2-bd=>a2+ac/c2-ac=b2+bd/d2-bd
 

16 tháng 1 2020

bài 1 sai đề ko bạn

16 tháng 1 2020

đề nào và mình ghi sai thứ tự bài

24 tháng 12 2018

Từ \(b^2=ac\)\(\Rightarrow\frac{b}{a}=\frac{c}{b}\)(1)

Từ \(c^2=bd\)\(\Rightarrow\frac{c}{b}=\frac{d}{c}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{b}{a}=\frac{c}{b}=\frac{d}{c}\)

\(\Rightarrow\left(\frac{b}{a}\right)^3=\left(\frac{c}{b}\right)^3=\left(\frac{d}{c}\right)^3=\frac{b^3}{a^3}=\frac{c^3}{b^3}=\frac{d^3}{c^3}=\frac{b^3+c^3+d^3}{a^3+b^3+c^3}\)

mà \(\left(\frac{b}{a}\right)^3=\frac{b}{a}.\frac{b}{a}.\frac{b}{a}=\frac{b}{a}.\frac{c}{b}.\frac{d}{c}=\frac{b.c.d}{a.b.c}=\frac{d}{a}\)

\(\Rightarrow\frac{b^3+c^3+d^3}{a^3+b^3+c^3}=\frac{d}{a}=\left(\frac{b}{a}\right)^3\left(đpcm\right)\)

24 tháng 12 2018

Bạn giải thích cho mk là vì sao \(\frac{b}{a}=\frac{b}{a}=\frac{b}{a}=\frac{b}{a}.\frac{c}{b}.\frac{d}{c}\)  với ạ? Mk k hiểu chỗ này

8 tháng 11 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó : \(\frac{ac}{a^2+c^2}=\frac{bk.dk}{\left(bk\right)^2+\left(dk^2\right)}=\frac{k^2.bd}{k^2\left(b^2+d^2\right)}=\frac{bd}{b^2+d^2}\)

\(\Rightarrow\frac{ac}{a^2+c^2}=\frac{bd}{b^2+d^2}\left(đ\text{pcm}\right)\)

16 tháng 1 2020

Từ \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

   \(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)

Lại có : \(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{abc}{bcd}=\frac{a}{d}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)

Chúc bạn học tốt !!!

17 tháng 1 2020

\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\)

\(\Leftrightarrow\left(a+5\right)\left(b-6\right)=\left(b+6\right)\left(a-5\right)\)

\(\Leftrightarrow ab-6a+5b-30=ab-5b+6a-30\)

\(\Leftrightarrow ab-6a+5b-30-ab+5b-6a+30=0\)

\(\Leftrightarrow\left(ab-ab\right)-\left(6a+6a\right)+\left(5b+5b\right)-\left(30-30\right)=0\)

\(\Leftrightarrow10b-12a=0\)

\(\Leftrightarrow10b=12a\)

\(\Leftrightarrow\frac{a}{10}=\frac{b}{12}\)

\(\Leftrightarrow\frac{a}{5}=\frac{b}{6}\)

\(\Leftrightarrow\frac{a}{b}=\frac{5}{6}\left(đpcm\right)\)

14 tháng 8 2018

1/ Câu hỏi của Mai Tâm Anh - Toán lớp 7 - Học toán với OnlineMath dòng cuối bớt 2 phần sau là ok

2/ thiếu điều kiện a+b+c khác 0

 \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\left(a+b+c\ne0\right)\)

=>a/b=1 => a=b

b/c=1 => b=c

Do đó a=b=c