K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(=2a^2+2b^2+2c^2-2ab-2bc-2ac\)

\(=2\left(a^2+b^2+c^2+2ab+2ac+2bc\right)-6ab-6bc-6ac\)

\(=2\left(a+b+c\right)^2-6\left(ab+bc+ac\right)\)

\(=2.6^2-6.12=0\)

Mà : \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)

nên \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Do đó: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow a=b=c\)

Vậy \(\left(a-b\right)^{2012}+\left(b-c\right)^{2013}+\left(c-a\right)^{2014}=0\)

17 tháng 3 2020

Câu hỏi của Hà Văn Minh Hiếu - Toán lớp 8 - Học toán với OnlineMath

11 tháng 9 2020

Ta có : \(a+b+c=6\)

\(\Rightarrow\left(a+b+c\right)^2=36\)

\(\Rightarrow a^2+b^2+c^2+2.\left(ab+bc+ca\right)=36\)

\(\Rightarrow a^2+b^2+c^2=36-2.12=12\)

Do đó : \(a^2+b^2+c^2=ab+bc+ca\left(=12\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Khi đó biểu thức :

\(\left(a-b\right)^{2012}+\left(b-c\right)^{2013}+\left(c-a\right)^{2014}=0+0+0=0\)

7 tháng 3 2020

Ta có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=-\frac{1}{c^3}\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-3\cdot\frac{1}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=3\cdot\frac{1}{abc}\)

( Do \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\) )

Khi đó : \(P=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc\cdot\frac{3}{abc}=3\)

NV
16 tháng 3 2019

\(a^{2013}+b^{2013}=a^{2012}+b^{2012}\Rightarrow a^{2012}\left(a-1\right)+b^{2012}\left(b-1\right)=0\) (1)

\(a^{2014}+b^{2014}=a^{2013}+b^{2013}\Rightarrow a^{2013}\left(a-1\right)+b^{2013}\left(b-1\right)=0\) (2)

Trừ vế cho vế của (2) cho (1):

\(\left(a-1\right)\left(a^{2013}-a^{2012}\right)+\left(b-1\right)\left(b^{2013}-b^{2012}\right)=0\)

\(\Leftrightarrow a^{2012}\left(a-1\right)^2+b^{2012}\left(b-1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}a^{2012}\left(a-1\right)^2=0\\b^{2012}\left(b-1\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a-1=0\\b-1=0\end{matrix}\right.\) \(\Rightarrow a=b=1\) (do \(a;b>0\))

\(\Rightarrow P=1+1=2\)

16 tháng 3 2019

Nguyễn Việt Lâm

18 tháng 9 2015

Ta sử dụng hằng đẳng thức \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right).\)

Theo giả thiết \(a+b+c=9,a^2+b^2+c^2=53\to81=53+2\left(ab+bc+ca\right)\to\)

\(ab+bc+ca=\frac{81-53}{2}=\frac{28}{2}=14\to A=3\left(ab+bc+ca\right)=52.\)

2.  Ta có \(4x^2-12x-1=-10\to\left(2x\right)^2-2\cdot2x\cdot3+9=0\to\left(2x-3\right)^2=0\to2x-3=0\to x=\frac{3}{2}.\)

2 tháng 9 2019

a)Ta có :

(a+b+c)2 - (ab+bc+ca) =0 <=> a2+b2+c2+ab+bc+ca =0

<=>2a2+2b2+2c2+2ab+2bc+2ca=0

<=>(a+b)2+(b+c)2+(c+a)2=0

<=>a+b =b+c =c+a =0

<=>a=b=c=0

Vậy điều kiện để phân thức M được xác định là a;b;c không đồng thời bằng 0.

b)Ta có hằng thức: (a+b+c)2=a2+b2+c2+2(ab+bc+ca)

Ta đặt a2+b2+c2=x ; ab+bc+ca=y.Khi đó (a+b+c)2= x+2y

Ta có: 

\(M=\frac{x\left(x+2y\right)+y^2}{x+2y-y}=\frac{x^2+2xy+y^2}{x+y}=\frac{\left(x+y\right)^2}{x+y}=x+y\)

= a2+b2+c2+ab+bc+ca.

=a2+b2+c2+ab+bc+ca

Gt thêm nhe