K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

cách 2 nếu chưa học bezout

x^3 +mx+n x-1 x^2+x+(m+1) x^3-x^2 - x^2+mx+n x^2-x - (m+1)x+n (m+1)x-(m+1) - n+m+1

Mà \(A\left(x\right):\left(x-1\right)\)dư 4\(\Rightarrow m+n+1=4\)

                                                 \(\Rightarrow m+n=3\left(1\right)\)

x^3 +mx+n x+1 x^2-x+(m+1) x^3+x^2 - -x^2+mx+n -x^2-x - (m+1)x+n (m+1)x+(m+1) - n-m-1

Mà \(A\left(x\right):\left(x+1\right)\)dư 6\(\Rightarrow n-m-1=6\)

                                               \(\Rightarrow n-m=7\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow\hept{\begin{cases}n+m=3\\n-m=7\end{cases}\Rightarrow\hept{\begin{cases}n=5\\m=-2\end{cases}}}\)

Vậy n=5 và m=-2

22 tháng 10 2019

Áp dụng định lý Bezout ta có:

\(A\left(x\right)\)chia x-1 dư 4 \(\Rightarrow A\left(1\right)=4\)

                                    \(\Rightarrow1+m+n=4\)

                                     \(\Rightarrow m+n=3\left(1\right)\)

\(A\left(x\right)\)chia x+1 dư 6 \(\Rightarrow A\left(-1\right)=6\)

                                       \(\Rightarrow-1-m+n=6\)

                                      \(\Rightarrow-m+n=7\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow\hept{\begin{cases}m+n=3\\-m+n=7\end{cases}\Rightarrow}\hept{\begin{cases}n=5\\m=-2\end{cases}}\)

Vậy n=5 và m=-2 

3 tháng 4 2020

Cách hack điểm hỏi đáp trên OLM => https://www.youtube.com/watch?v=sMvl8_N_N54

https://olm.vn/hoi-dap/detail/92036248714.html

Xem ở link này ( mình gửi cho)

Học tốt!!!!!!!

30 tháng 10 2019

Ta có:

\(x^2+ax+b=\left(x+1\right)\cdot P\left(x\right)+6\)

\(x^2+ax+b=\left(x-2\right)\cdot Q\left(x\right)+3\)

Với \(x=-1\Rightarrow x^2+ax+b=6\Leftrightarrow1-a+b=6\Rightarrow-a+b=6\)

Với \(x=2\Rightarrow x^2+ax+b=6\Leftrightarrow4+2a+b=6\Leftrightarrow2a+b=2\)

Từ \(\left(1\right);\left(2\right)\Rightarrow-3a=4\Rightarrow a=-\frac{4}{3}\Rightarrow b=\frac{14}{3}\)

3 tháng 10 2021

Để \(f\left(x\right):\left(x-1\right)R4\) thì \(x^3+mx+n=\left(x-1\right)\cdot a\left(x\right)+4\)

Thay \(x=1\Leftrightarrow m+n=4\left(1\right)\)

Để \(f\left(x\right):\left(x+1\right)R6\) thì \(x^3+mx+n=\left(x+1\right)\cdot b\left(x\right)+6\)

Thay \(x=-1\Leftrightarrow n-m-1=6\Leftrightarrow n-m=7\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}m=\left(4-7\right):2=-\dfrac{3}{2}\\n=7+\left(-\dfrac{3}{2}\right)=\dfrac{11}{2}\end{matrix}\right.\)

Theo định lý Bơ du ta có:

Số dư của f(x) cho x-1 là \(f\left(1\right)\)

\(\Rightarrow f\left(1\right)=4\Rightarrow1+m+n=4\Leftrightarrow m+n=3\left(1\right)\)

Số dư của f(x) cho x+1 là \(f\left(-1\right)\)

\(\Rightarrow f\left(-1\right)=6\Rightarrow-1-m+n=6\Leftrightarrow-m+n=7\left(2\right)\)

Từ (1) và (2) ta có:

\(\left\{{}\begin{matrix}m=-2\\n=5\end{matrix}\right.\)

 

1 tháng 1 2019

x4-30x2+31x-30

=x4-30x2+30x+x-30

=(x4+x)-(30x2-30x+30)

=x(x3+1)-30(x2-x+1)

=x(x+1)(x2-x+1)-30(x2-x+1)

=(x2+x)(x2-x+1)-30(x2-x+1)

=(x2-x+1)(x2+x-30)

8 tháng 12 2016

Gọi Ư CLN của tử và mẫu là d => 3n+1 chia hết cho d, 5n+2 chia hết cho d . Sau đó nhân 3n+1 với 5 và 5n+2 với 3, rồi lấy mẫu trừ tử

=> 15n+6-(15n+5) chia hết cho d => 1 chia hết cho d => d=1=> (3n+1;5n+2)=1(ĐFCM)

8 tháng 12 2016

Bài 2: 

x=y+1 =>x-y=1

Ta có : 

(x-y)(x+y)(x2+y2)(x4+y4)= (x2-y2)(x2+y2)(x4+y4)

=(x4-y4)(x4+y4)=x8-y8 (ĐFCM)