Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)
Ta có: \(A=\frac{20^{102}+1}{20^{101}+1}< \frac{20^{102}+1+19}{20^{101}+1+19}=\frac{20.\left(20^{101}+1\right)}{20.\left(20^{100}+1\right)}=\frac{20^{101}+1}{20^{100}+1}\)
\(\Rightarrow A< B\)
\(20A=\dfrac{20^{101}-1-19}{20^{101}-1}=1-\dfrac{19}{20^{101}-1}\)
\(20B=\dfrac{20^{102}-1-19}{20^{102}-1}=1-\dfrac{19}{20^{102}-1}\)
mà \(\dfrac{-19}{20^{101}-1}< \dfrac{-19}{20^{102}-1}\)
nên A<B
\(\frac{20^{101}-1}{20^{102}-1}>\frac{20^{101}-20}{20^{102}-20}=\frac{20.\left(20^{100}-1\right)}{20.\left(20^{101}-1\right)}=\frac{20^{100}-1}{20^{101}-1}\)
\(\Rightarrow\frac{20^{101}-1}{20^{102}-1}>\frac{20^{100}-1}{20^{101}-1}\)
Câu 1 :
Ta có : \(A=\frac{10^{100}+1}{10^{101}+1}\)
\(\Rightarrow10A=\frac{10^{101}+10}{10^{101}+1}=\frac{10^{101}+1+9}{10^{101}+1}=1+\frac{9}{10^{101}+1}\)
Ta có : \(B=\frac{10^{101}+1}{10^{102}+1}\)
\(10B=\frac{10^{102}+10}{10^{102}+1}=\frac{10^{102}+1+9}{10^{102}+1}=1+\frac{9}{10^{102}+1}\)
Vì 10101+1<10102+1
\(\Rightarrow\frac{9}{10^{101}+1}>\frac{9}{10^{102}+1}\)
\(\Rightarrow1+\frac{9}{10^{101}+1}>1+\frac{9}{10^{102}+1}\)
\(\Rightarrow\)10A>10B
\(\Rightarrow\)A>B
Vậy A>B.
Câu 2 :
Ta có : \(E=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Vì 2001<2001+2002 và 2002<2001+2002
\(\Rightarrow\hept{\begin{cases}\frac{2000}{2001}>\frac{2000}{2001+2002}\\\frac{2001}{2002}>\frac{2001}{2001+2002}\end{cases}}\)
\(\Rightarrow C>E\)
Vậy C>E.
$\frac{10^{101-1}}{10^{102-1}}$ và $\frac{10^{100+1}}{10^{101+1}}$
= $\frac{10^{100}}{10^{101}}$ và $\frac{10^{101}}{10^{102}}$
Mà $\frac{10^{100}}{10^{101}}$ < $\frac{10^{101}}{10^{102}}$
=> $\frac{10^{101-1}}{10^{102-1}}$ < $\frac{10^{100+1}}{10^{101+1}}$
Ta có :
\(N=\frac{101^{103}+1}{101^{104}+1}< 1=\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}=\frac{101\left(101^{102}+1\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}=M\)
Vậy\(N< M\)
Ta có :\(C=\frac{20^{10}+1}{20^{10}-1}\)
=> \(C-1=\frac{20^{10}+1-\left(20^{10}-1\right)}{20^{10}-1}=\frac{2}{20^{10}-1}\)
Lại có D = \(\frac{20^{10}-1}{20^{10}-3}\)
=> D - 1 = \(\frac{20^{10}-1-\left(20^{10}-3\right)}{20^{10}-3}=\frac{2}{20^{10}-3}\)
Vì \(20^{10}-1>20^{10}-3\Rightarrow\frac{2}{20^{10}-1}< \frac{2}{2^{10}-3}\Rightarrow C-1< D-1\Rightarrow C< D\)
Có : \(C=\frac{20^{10}+1}{20^{10}-1}\)
< = > \(C-1=\frac{20^{10}+1-\left(20^{10}-1\right)=\frac{2}{20^{10}-1}}{20^{10}-1}\)
có D \(\frac{20^{10}-1}{20^{10}-3}\)
=> D - 1 = \(\frac{20^{10}-1\left(20^{10}-3\right)}{20^{10}-3}=\frac{2}{20^{10}-3}\)
Bài 4 :
xy - x + 2y = 3
x ( y - 1 ) + 2y - 2 = 3 - 2
x ( y - 1 ) + 2 ( y - 1 ) = 1
( y - 1 ) ( x + 2 ) = 1
Xét bảng :
y-1 | 1 | -1 |
x+2 | 1 | -1 |
y | 2 | 0 |
x | -1 | -3 |
Vậy (x;y) = (-1;2) = (-3;0)
a, xy-x+2y=3
<=>x(y-1)+2(y-1)=1
<=>(x+2)(y-1)=1
x+2 | 1 | -1 | |
y-1 | 1 | -1 |
x | -1 | -3 |
y | 2 | 0 |