Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
i) 58:252=58:(52)2=58:52.2=58:54=58−4=54
k) 49:642=49:(43)2=49:43.2=49:46=49−6=43
l) 225:324=225:(25)4=225:25.4=225:220=225−20=25
m) 1253:254=(53)3:(52)4=53.3:52.4=59:58=5
e) 38:36=38−6=32
f) 210:83=210:(23)3=210:23.3=210:29=210−9=2
g) 127:67=(12:6)7=27
h_ 215:813kết quả là số dư nên không tính ( đề sai )
a) 410.230=(22)10.230=22.10.230=220.230=220+30=250
b) 925.274.813=(32)25.(33)4.(34)3=33.25.33.4.34.3=375.312.312=375+12+12=399
c) 2550.1255=(52)50.(53)5=52.50.53.5=5100.515=5100+15=5115
d) 643.48.164=(43)3.48.(42)4=43.3.48.42.4=49.48.48=49+8+8=425
Ta có : A = 1/2 . ( 7^2012^2015 - 3^92^94 )
= 5 . 1/10 . ( 7^2012^2015 - 3^92^94 ) < chia hết cho 5 >
111\(\equiv\)0(mod 7) => 333\(\equiv\)0(mod 7)
=>111333+333111 chia hết cho 7
a) Theo bài ra, ta có:
\(\overline{abbc}=\overline{ab}.\overline{ac}.7\)
\(\Rightarrow\overline{ab}.100+\overline{bc}=\overline{ab}.\overline{ac}.7\)
\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=\overline{ac}.7\)
Ta thấy : \(\frac{10}{90}\le\frac{\overline{bc}}{\overline{ab}}\le\frac{91}{10}\)
\(\Rightarrow100+\frac{10}{90}\le100+\frac{\overline{bc}}{\overline{ab}}\le100+\frac{91}{10}\)
\(\Rightarrow\frac{901}{9}\le100+\frac{\overline{bc}}{\overline{ab}}\le\frac{1091}{10}.\)
Ta thấy: \(\overline{ac}\in N\Rightarrow\overline{ac}.7\in N\)
Mà \(\overline{ac}.7⋮7\Rightarrow\overline{ac}.7=105\)
\(\Rightarrow\overline{ac}=105:7=15\Rightarrow a=1;c=5\)
\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=105\Rightarrow\frac{\overline{bc}}{\overline{ab}}=105-100=5\)
\(\Rightarrow\overline{bc}=5.\overline{ab}\Rightarrow b.10+c=50.a+5b\)
\(\Rightarrow5b+5=50\Rightarrow5b=50-5=45\)
\(\Rightarrow b=45:5=9.\)
Vậy \(a=1;b=9;c=5.\)
b) Theo bài ra, ta có:
\(A=\frac{1}{2}\left(7^{2012^{2015}}-3^{92^{94}}\right)\)
Vì \(7>3;2012>92;2015>94\Rightarrow7^{2012^{2015}}>3^{92^{94}}\)
\(\Rightarrow7^{2012^{2015}}-3^{92^{94}}\)là một số tự nhiên.
\(2012\equiv0\left(mod4\right)\)
\(\Rightarrow2012^{2015}\equiv0\left(mod4\right)\)
\(\Rightarrow2012^{2015}=4m\left(m\in N\right)\)
\(\Rightarrow7^{2012^{2015}}=7^{4m}=\left(7^4\right)^m=\overline{...1}^m=\overline{...1}.\)
\(92\equiv0\left(mod4\right)\)
\(\Rightarrow92^{94}\equiv0\left(mod4\right)\)
\(\Rightarrow92^{94}=4n\left(n\in N\right)\)
\(\Rightarrow3^{92^{94}}=3^{4n}=\left(3^4\right)^n=\overline{...1}^n=\overline{...1}.\)
Thay vào, ta được :
\(A=\frac{1}{2}\left(\overline{...1}-\overline{...1}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\overline{...0}\right)\)
\(\overline{...0}\)là một số tự nhiên chia hết cho 10 \(\Rightarrow\)nó chia hết cho 2
\(\Rightarrow\)\(A\)là một số tự nhiên có chữ số tận cùng là 0 hoặc 5
\(\Rightarrow A⋮5.\)
Vậy A là một số tự nhiên chia hết cho 5.
\(\)
Ta có: \(A=\frac{1}{2}.7^{2012^{2015}-3^{92^{94}}}\)
20124n có chữ số tận cùng là 6 => 20122015=20122012.20123=(...6).(...8)=(...8)
924n có chữ số tận cùng là 6 => 9294=9292.922=(...6).(...4)=(...4)
Ta lại có: \(A=\frac{1}{2}.7^{\left(...8\right)-3^{\left(...4\right)}}=\frac{1}{2}.7^{\left(...8\right)-\left(...1\right)}=\frac{1}{2}.7^{\left(..7\right)}=0,5.\left(...3\right)=\left(...,5\right)\)chia hết cho 5.
hhhi, chữ kiểu j` vậy bn?