Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a)Xét ΔBAD va ΔBHD
Có BA=BH;BD là cạnh chung;gocABD=goc HBD→ΔBAD=ΔBHD(c-g-c)
→góc BAD=gocBHD(góc tương ứng)
→góc BAD=gocBAH=90 độ→DH vuông góc với BC
b)ΔBAD=ΔBHD(phần a)→gocADB=gocHDB
→ADB=HDB=110 chia 2=55 độ
Xét ΔABD .Có góc A + gocABD + goc BDA=180 do
→goc ABD=180-90-55=35 do
a: BC=5cm
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó:ΔBAE=ΔBHE
Suy ra: BA=BH
c: Ta có: ΔBAE=ΔBHE
nên EA=EH
mà EH<EC
nên EA<EC
a, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=5cm\)
b, Xét tam giác ABE và tam giác HBE
BE _ chung
^ABE = ^HBE
Vậy tam giác ABE = tam giác HBE (ch-gn)
c, Xét tam giác EHC vuông tại H
có EC > HE ( cạnh huyền > cạnh góc vuông )
HE = AE ( 2 cạnh tương ứng tam giác ABE và HBE )
=> AE < EC