K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

18.B
19.C
20.C

30 tháng 10 2021

18. B

19. C

20.C

9 tháng 8 2020

C1. ( 2x + 3y )2 + 2( 2x + 3y ) + 1 = [ ( 2x + 3y ) + 1 ]2

C2. ( x + 2 )2 = ( 2x - 1 )2

<=> ( x + 2 )2 - ( 2x - 1 )2 = 0

<=> [ x + 2 + ( 2x - 1 ) ][ x + 2 - ( 2x - 1 ) ] = 0

<=> [ 3x + 1 ][ 3 - x ] = 0

<=> \(\orbr{\begin{cases}3x+1=0\\3-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=3\end{cases}}\)

b) ( x + 2 )2 - x + 4 = 0

<=> x2 + 4x + 4 - x + 4 = 0

<=> x2 - 3x + 8 = 0

Mà ta có x2 - 3x + 8 = x2 - 3x + 9/4 + 23/4 = ( x - 3/2 )2 + 23/4 ≥ 23/4 > 0 với mọi x 

=> Phương trình vô nghiệm

C3. a) A =  x2 - 2x + 5 = x2 - 2x + 4 + 1 = ( x - 2 )2 + 1

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

Vậy AMin = 1 , đạt được khi x = 2

b)B =  x2 - x + 1 = x2 - x + 1/4 + 3/4 = ( x - 1/2 )2 + 3/4

\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2

Vậy BMin = 3/4, đạt được khi x = 1/2

c) C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

C = [ ( x - 1 )( x + 6 )][ ( x + 2 )( x + 3 ]

C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]

C = ( x2 + 5x )2 - 36 

\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)

Dấu " = " xảy ra <=> x2 + 5x = 0

                          <=> x( x + 5 ) = 0

                          <=> x = 0 hoặc x + 5 = 0

                          <=> x = 0 hoặc x = -5

Vậy CMin = -36, đạt được khi x = 0 hoặc x = -5

d) D =  x2 + 5y2 - 2xy + 4y + 3

= ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2

= ( x - y )2 + ( 2y + 1 )2 + 2

\(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(2y+1\right)^2\ge0\end{cases}}\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\forall x,y\)

=> \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\y=-\frac{1}{2}\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)

Vậy DMin = 2 , đạt được khi x = y = -1/2

C4.  a) ( Cái này tìm được Min k tìm được Max )

A = x2 - 4x - 2 = x2 - 4x + 4 - 6 = ( x - 2 )2 - 6

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2-6\ge-6\)

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

Vậy AMin = -6 , đạt được khi x = 2

b) B = -2x2 - 3x + 5 = -2( x2 + 3/2x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8

\(-2\left(x+\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x+\frac{3}{4}\right)+\frac{49}{8}\le\frac{49}{8}\)

Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4

Vậy BMax = 49/8 , đạt được khi x = -3/4

c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9 

\(-\left(x+1\right)^2\le0\Rightarrow-\left(x+1\right)^2+9\le9\)

Dấu " = " xảy ra <=> x + 1 = 0 => x = -1

Vậy CMax = 9 , đạt được khi x = -1

d) D = -8x2 + 4xy - y2 + 3 ( Cái này mình đang tính ạ )

C5. a) A = 25x2 - 20x + 7

A = 25x2 - 20x + 4 + 3

A = ( 5x2 - 2 )2 + 3 ≥ 3 > 0 với mọi x ( đpcm )

b) B = 9x2 - 6xy + 2y2 + 1

B = ( 9x2 - 6xy + y2 ) + y2 + 1

B = ( 3x - y )2 + y2 + 1 ≥ 1 > 0 với mọi x, y ( đpcm )

c) C = x2 - 2x + y2 + 4y + 6 

C = ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) + 1

C = ( x - 1 )2 + ( y + 2 )2 + 1 ≥ 1 > 0 với mọi x,y ( đpcm )

d) D = x2 - 2x + 2 

D = x2 - 2x + 1 + 1

D = ( x - 1 )2 + 1 ≥ 1 > 0 với mọi x ( đpcm )

20 tháng 3 2019

a) Ta có: \(A=4x^2+4x+11\)

        \(\Rightarrow A=4x^2+2x+2x+11\)

        \(\Rightarrow A=2x.\left(2x+1\right)+\left(2x+1\right)+10\)

        \(\Rightarrow A=\left(2x+1\right).\left(2x+1\right)+10\)

        \(\Rightarrow A=\left(2x+1\right)^2+10\)

  Ta lại có: \(\left(2x+1\right)^2\ge0\forall x\inℝ\)

             \(\Rightarrow A\ge10\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x+1\right)^2=0\)

                        \(\Rightarrow2x+1=0\)

                        \(\Rightarrow2x=-1\)

                        \(\Rightarrow x=\frac{-1}{2}\)

      Vậy \(A_{min}=10\Leftrightarrow x=\frac{-1}{2}\)

        

12 tháng 6 2019

a/ \(4x^2+4x+11\)

\(=\left(2x^2\right)+2\cdot2x+1-1+11\)

\(=\left(2x+1\right)^2-1+11\)

\(=\left(2x+1\right)^2+10\)

Có :  \(\left(2x+1\right)^2\ge0\)

\(\Rightarrow\left(2x+1\right)^2+10\ge10\)

\(\Rightarrow GTNN\left(4x^2+4x+11\right)=10\)

   Với \(\left(2x+1\right)^2=0;x=-\frac{1}{2}\)

12 tháng 6 2019

\(a,A=4x^2+4x+11\)

\(A=(2x+1)^2+10\)

Do \((2x+1)^2\ge0\Rightarrow(2x+1)^2+10\ge10\forall x\)

\(\Rightarrow Min_a=10\Rightarrow2x+1=0\Rightarrow2x=-1\Leftrightarrow x=-\frac{1}{2}\)

Vậy giá trị nhỏ nhất của A là 10 khi x = -1/2

4 tháng 11 2018

Bạn tự xét dấu "=" nhé, mình chỉ hướng dẫn cách tách thôi

a) \(A=5x^2-4x+1\)

\(A=5\left(x^2-\frac{4}{5}x+\frac{1}{5}\right)\)

\(A=5\left[x^2-2\cdot x\cdot\frac{2}{5}+\left(\frac{2}{5}\right)^2+\frac{1}{25}\right]\)

\(A=5\left[\left(x-\frac{2}{5}\right)^2+\frac{1}{25}\right]\)

\(A=5\left(x-\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\forall x\)

b) Tương tự đặt -9 ra ngoài rồi khai triển như câu a)

c) \(F=-2x^2-y^2+2xy+4x-40\)

\(F=-x^2-x^2-y^2+2xy+4x-40\)

\(F=-\left(x^2-2xy+y^2\right)-\left(x^2-4x+4\right)-36\)

\(F=-36-\left(x-y\right)^2-\left(x-2\right)^2\)

\(F=-36-\left[\left(x-y\right)^2+\left(x-2\right)^2\right]\le-36\forall x;y\)

8 tháng 8 2020

Bài làm:

a) Ta có: \(A=4x^2+4x+11=\left(4x^2+4x+1\right)+10=\left(2x+1\right)^2+10\ge10\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)

Vậy \(Min_A=10\Leftrightarrow x=-\frac{1}{2}\)

b) \(B=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(B=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(B=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(B=\left(x^2+5x\right)^2-36\ge-36\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x^2+5x\right)^2=0\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy \(Min_B=-36\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

c) Ta có: \(C=x^2-2x+y^2-4y+7\)

\(C=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)

\(C=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy \(Min_C=2\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

8 tháng 8 2020

a) A = 4x2 + 4x + 11

A = 4( x2 + x + 1/4 ) + 10

A = 4( x + 1/2 )2 + 10

\(4\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{1}{2}^2\right)+10\ge0\)

Dấu " = " xảy ra <=> x + 1/2 = 0 => x = -1/2

Vậy AMin = 10 , đạt được khi x = -1/2

b) B = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

B = [( x - 1 )( x + 6 )][( x + 2 )( x + 3 )]

B = ( x2 + 5x - 6 )( x2 + 5x + 6 )

Đặt a = x2 + 5x 

=> B = ( a - 6 )( a + 6 ) = a2 - 36

\(a^2\ge0\forall a\Rightarrow a^2-36\ge-36\)

Dấu " = " xảy ra <=> a2 = 0 => a = 0

<=> x2 + 5x = 0

<=> x( x + 5 ) = 0

<=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy BMin = -36 , đạt được khi x = 0 hoặc x = -5

c) C = x2 - 2x + y2 - 4y + 7 

C = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 2

C = ( x - 1 )2 + ( y - 2 )2 + 2

\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y-2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy CMin = 2 , đạt được khi x = 1, y = 2

19 tháng 9 2018

a ) A = 4x2 + 4x + 11

         = 4x2 + 4x + 1 + 10

          = ( 2x + 1 )2 + 10

Nhận xét : ( 2x + 1 )2 > 0 với mọi x thuộc R

       => ( 2x + 1 )2 + 10 > 10

       => A > 10

=> Giá trị nhỏ nhất của A là 10

Dấu = xảy ra khi :  ( 2x + 1 )2 = 0

                             => 2x + 1 = 0

                              => x = \(-\frac{1}{2}\)

Vậy giá trị nhỏ nhất của A là 10 khi x = \(-\frac{1}{2}\)

b ) B = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )

        = ( x - 1 ) ( x + 6 ) ( x + 2 ) ( x  + 3 )

        = ( x2 + 5x - 6 ) ( x2 + 5x + 6 )

Đặt t = x2 + 5x 

=> B = ( t - 6 ) ( t + 6 )

         = t2 - 36

Nhận xét : 

 t2 > 0 với mọi t thuộc R

=> t2 - 36 > - 36

=> B > - 36

=> Giá trị nhỏ nhất của B là - 36

Dấu = xảy ra khi : t2 = 0

                        => t = 0

                  mà t = x2 + 5x

                         => x2 + 5x = 0

                          => x ( x + 5 ) = 0

                        => \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)

                        => \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy giá trị nhỏ nhất của B là - 36 khi \(x\in\left\{0;-5\right\}\)

c )  C = x2 - 2x + y2 - 4y + 7

            = ( x2 - 2x + 1 ) +  ( y2 - 4y + 4 )  + 2

            = ( x - 1 )2 + ( y - 2 )2 + 2

Nhận xét : 

( x - 1 )2 > 0 với mọi x thuộc R

( y - 2 )2 > 0 với mọi y thuộc R

=> ( x - 1 )2 + ( y - 2 )2 > 0

=> ( x - 1 )2 + ( y - 2 )2 + 2 > 2

=> C > 2

=> Giá trị nhỏ nhất của C là 2

Dấu = xảy ra khi : \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)

                           => \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)

                            => \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy giá trị nhỏ nhất của C là 2 khi x = 1 và y = 2

6) c) x3 - x2 + x = 1

<=> x3 - x2 + x - 1 = 0

<=> (x3 - x2) + (x - 1) = 0

<=> x2 (x - 1) + (x - 1) = 0

<=> (x - 1) (x2 + 1) = 0

=> x - 1 = 0 hoặc x2 + 1 = 0

* x - 1 = 0 => x = 1

* x2 + 1 = 0 => x2 = -1 => x = -1

Vậy x = 1 hoặc x = -1

15 tháng 11 2019

Bài 5: 

a) Đặt   \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=3^{32}-1\)

\(\Rightarrow A=\frac{3^{32}-1}{8}\)

b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)

=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)

\(=\left(7x+6-5+6x\right)^2\)

\(=\left(13x+1\right)^2\)

4 tháng 8 2018

Ik mk nha, hôm nay ngày mai, ngày kia mk ik 3 lần lại cho bạn (thành 9 lần)

Nhớ kb với mìn lun nha!! Mk rất vui đc làm quen vs bạn, cảm ơn mn nhìu lắm

4 tháng 8 2018

a) \(A=x^2-8x+17=\left(x-4\right)^2+1\ge1\)

Vậy MIN A = 1   khi  x = 4

b) \(T=x^2-4x+7=\left(x-2\right)^2+3\ge3\)

Vậy MIN T = 3   khi  x = 2

c)  \(H=3x^2+6x-1=3\left(x+1\right)^2-4\ge-4\) 

Vậy MIN H = -4  khi   x = -1

d)  \(E=x^2+y^2-4\left(x+y\right)+16=\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\)

Vậy MIN E = 8   khi  x = y = 2

e) \(K=4x^2+y^2-4x-2y+3=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)

Vậy MIN  K = 1    khi  x = 1/2;  y = 1

f) \(M=\frac{3}{2}x^2+x+1=\frac{3}{2}\left(x+\frac{1}{3}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)

Vậy MIN   M = 5/6  khi  x = -1/3

21 tháng 7 2018

Bài 7:

a)  \(A=-4x^2-12x=-\left(2x+3\right)^2-9\le-9\)

Vậy MAX A = -9   khi   x = -3/2

b) \(B=3-4x-x^2=-\left(x+2\right)^2+7\le7\)

Vậy MAX B = 7   khi  x = -2

d)  \(D=2x-2-3x^2=-3\left(x-\frac{1}{3}\right)^2-\frac{5}{3}\le-\frac{5}{3}\)

Vậy MAX D = -5/3  khi  x = 1/3

p/s: lần sau đăng ít bài thôi nhé, chia nhỏ ra mà đăng, bạn đăng thế này khiến người làm hơi bất tiện khi đọc đề

21 tháng 7 2018

Bài 5:

a)  \(x^3-x^2-x+1=0\)

\(\Leftrightarrow\)\(x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)^2\left(x+1\right)=0\)

đến đây bạn làm tiếp nha

b)   mình chỉnh đề

 \(\left(2x-3\right)^2-\left(4x^2-9\right)=0\)

\(\Leftrightarrow\)\(4x^2-12x+9-4x^2+9=0\)

\(\Leftrightarrow\)\(12x=18\)

\(\Leftrightarrow\)\(x=1,5\)

c)  \(x^4+2x^3-6x-9=0\)

\(\Leftrightarrow\)\(x^2\left(x^2-3\right)+2x\left(x^2-3\right)+3\left(x^2-3\right)=0\)

\(\Leftrightarrow\)\(\left(x^2-3\right)\left(x^2+2x+3\right)=0\)

đến đây bạn làm tiếp nhé