Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+(x+1)+(x+2)+...+100+101=101
x+(x+1)+(x+2)+....+100=0 (1)
=>[(x+100).n]:2=0
gọi n là số số hạng ở vế trái của (1)
mà n khác 0=>x+100=0
=>x=-100
vậy x=-100
Xét tử ta có:
\(101+100+99+98+...........+3+2+1\)
\(=1+2+3+..........+99+100+101\)
\(=\frac{101.102}{2}=5151\)
Xét mẫu ta có:
\(101-100+99-98+.......+3-2+1\)
\(=\left(101-100\right)+\left(99-98\right)+.......+\left(3-2\right)+1\)
\(=1+1+.......+1+1=51\)
\(\Rightarrow A=\frac{5151}{51}=101\)
a) 100+-570+(-430)
=-470+(-430)
=-900
b)-2005+-596+-201+496+301
=-2005+(-596+496)+(-201+301)
=-2005+(-100)+100
=-2005+[-100+100]
=-2005+0
=-2005
Bài làm:
\(A=\frac{101+100+99+...+3+2+1}{101-100+99-98+...+3-2+1}=\frac{\left(101+1\right).101\div2}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)
\(A=\frac{5151}{1+1+...+1+1}=\frac{5151}{51}=101\)(51 số hạng 1)
A=(1-2)+(3-4)+...+(99-100)+101
= -1-1-...-1+101 ( 50 số -1)
=-50+101=-51
\(\frac{7^{101-1}}{5}=\frac{7^{100}}{5}\)