K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

O A B C H D I J E

a) Ta có: ^CBH=^ACH (Cùng phụ ^HCB) (1)

Xét \(\Delta\)CHD: I và J lần lượt là trung điểm của CH & DH => IJ là đường trung bình \(\Delta\)CHD

=> IJ // CD => IJ // AC => ^CIJ=^ACH (So le trg) (2)

Từ (1) và (2) => ^CIJ=^CBH (đpcm).

b) Thấy CJ là đường trung bình của tam giác ADH => \(\frac{CJ}{AH}=\frac{1}{2}\)

Mà \(\frac{HI}{CH}=\frac{1}{2}\)(Do I là trg điểm CH) => \(\frac{CJ}{AH}=\frac{HI}{CH}\Rightarrow\frac{CJ}{HI}=\frac{AH}{CH}\)

Dễ c/m \(\Delta\)AHC ~ \(\Delta\)CHB => \(\frac{AH}{CH}=\frac{CH}{HB}\Rightarrow\frac{CJ}{HI}=\frac{CH}{HB}\)

Lại có: CJ//AB và CH vuông AB => CH vuông CJ => ^JCH=900

Xét \(\Delta\)CJH và \(\Delta\)HIB: ^JCH=^IHB; \(\frac{CJ}{CH}=\frac{CH}{HB}\)=> \(\Delta\)CJH~\(\Delta\)HIB (c.g.c) (đpcm).

c) Ta có: ^HIB + ^HBI = 900. Mà ^HBI=^CHJ (Do \(\Delta\)CJH~\(\Delta\)HIB) => ^HIB+^CHJ=900

=> Tam giác HEI vuông tại E => ^IEJ=900

Xét tứ giác CIEJ: ^IEJ=^ICJ=900 => Tứ giác CIEJ nội tiếp đường tròn

=> ^ECI=^EJI hay ^ECH=^HJI. Mà ^HJI=^HDC (Vì IJ//CD) => ^ECH=^HDC

Xét \(\Delta\)HEC và \(\Delta\)HCD: ^ECH=^CDH (cmt); ^CHD chung => \(\Delta\)HEC~\(\Delta\)HCD (g.g)

Suy ra: \(\frac{HE}{HC}=\frac{HC}{HD}\Rightarrow HE.HD=HC^2\)(đpcm).

17 tháng 6 2018

có vài chỗ bạn ghi nhầm nha, may là mình cũng thuộc hàng top của huyện nên mới hiểu đc đó