Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2,7+\left|x-1,5\right|\ge2,7\)
\(minA=2,7\Leftrightarrow x=1,5\)
b) \(B=\left|4,1+x\right|-6,3\ge-6,3\)
\(minB=-6,3\Leftrightarrow x=-4,1\)
a)
Ta có:
\(\left|x-1,5\right|\)≥0
=>\(2,7+\left|x-1,5\right|\)≥2,7
GTNN:A=2,7 khi x-1,5=0
x=1,5
Ta có:
\(\left|4,1+x\right|\)≥0
=>\(\left|4,1+x\right|-6,3\)≥-6,3
GTNN:B=6,3 khi 4,1+x=0
x=-4,1
a) B = | 2x - 3 | - 7
| 2x - 3 | ≥ 0 ∀ x => | 2x - 3 | - 7 ≥ -7
Đẳng thức xảy ra <=> 2x - 3 = 0 => x = 3/2
=> MinB = -7 <=> x = 3/2
C = | x - 1 | + | x - 3 |
= | x - 1 | + | -( x - 3 ) |
= | x - 1 | + | 3 - x | ≥ | x - 1 + 3 - x | = | 2 | = 2
Đẳng thức xảy ra khi ab ≥ 0
=> ( x - 1 )( 3 - x ) ≥ 0
=> 1 ≤ x ≤ 3
=> MinC = 2 <=> 1 ≤ x ≤ 3
b) M = 5 - | x - 1 |
- | x - 1 | ≤ 0 ∀ x => 5 - | x - 1 | ≤ 5
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MaxM = 5 <=> x = 1
N = 7 - | 2x - 1 |
- | 2x - 1 | ≤ 0 ∀ x => 7 - | 2x - 1 | ≤ 7
Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2
=> MaxN = 7 <=> x = 1/2
a. Vì \(\left|3x-2\right|\ge0\forall x\)
\(\Rightarrow2\left|3x-2\right|-1\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow2\left|3x-2\right|=0\Leftrightarrow3x-2=0\Leftrightarrow x=\frac{2}{3}\)
Vậy Amin = - 1 <=> x = 2/3
b. Vì \(\left|x-4x\right|\ge0\forall x\)
\(\Rightarrow5\left|1-4x\right|-1\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow5\left|1-4x\right|=0\Leftrightarrow1-4x=0\Leftrightarrow x=\frac{1}{4}\)
Vậy Bmin = - 1 <=> x = 1/4
c. Vì \(x^2\ge0\forall x;\left|y-2\right|\ge0\forall y\)
\(\Rightarrow x^2+3\left|y-2\right|-1\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}x^2=0\\3\left|y-2\right|=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\y-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy Cmin = - 1 <=> x = 0 ; y = 2
d. Vì \(\left|x\right|\ge0\forall x\)\(\Rightarrow x+\left|x\right|\ge0\forall x\)
Dấu "=" xảy ra <=> x bé hơn hoặc bằng 0
Vậy Dmin = 0 <=> x bé hơn hoặc bằng 0
e.
+) Nếu x > hoặc bằng 7
=> E = | x - 7 | + 6 - x = x - 7 + 6 - x = -1
Vậy x > hoặc bằng 7 thì E có một giá trị duy nhất là -1
+) Nếu 0 < x < 7
=> E = | x - 7 | + 6 - x = - x + 7 + 6 - x = - 2x + 13 ( nhỏ nhất bằng 1 <=> x = 6 )
+) Nếu x bé hơn hoặc bằng 0
=> E = | x - 7 | + 6 - x = - x + 7 + 6 + x = 13
Vậy Emin = -1 <=> x lớn hơn hoặc bằng 7
\(A=\left(x-1\right)^2+|y+3|+1\)
Ta thấy : \(\left(x-1\right)^2\ge0\)
\(|y+3|\ge0\)
Suy ra \(\left(x-1\right)^2+|y+3|+1\ge1\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}< =>\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)
Vậy \(Min_A=1\)khi \(x=1;y=-3\)
\(B=|x^2-1|+\left(x+1\right)^2+y^2\)
Ta dễ dàng nhận thấy :
\(|x^2-1|\ge0\)
\(\left(x+1\right)^2\ge0\)
\(y^2\ge0\)
Cộng vế với vế ta được \(|x^2-1|+\left(x+1\right)^2+y^2\ge0\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}x^2-1=0\\x+1=0\\y=0\end{cases}< =>\hept{\begin{cases}x=\pm1\\x=-1\\y=0\end{cases}< =>\hept{\begin{cases}x=-1\\y=0\end{cases}}}}\)
Vậy \(Min_B=0\)khi \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
\(B=x^2-x+2=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{7}{4}=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
Vậy \(B_{min}=\frac{7}{4}\)\(\Leftrightarrow x=\frac{1}{2}\)
\(A=2x^2-3x+6=2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}+\frac{39}{16}\right)\)
\(=2\left[\left(x-\frac{3}{4}\right)^2+\frac{39}{16}\right]\ge\frac{39}{8}\)
Vậy \(A_{min}=\frac{39}{8}\Leftrightarrow x=\frac{3}{4}\)
\(A=2,7+\left|x-1,5\right|\ge2,7\)
Dấu \("="\Leftrightarrow x-1,5=0\Leftrightarrow x=1,5\)
Vậy \(A_{min}=2,7\)
\(B=\left|4,1+x\right|-6,3\ge-6,3\)
Dấu \("="\Leftrightarrow4,1+x=0\Leftrightarrow x=-4,1\)
Vậy \(B_{min}=-6,3\)