K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho hbh ABCD. Trên các cạnh AB, CD lần lượt lấy các điểm M, N sao cho AM=DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E, F. Chứng minh rằng:a) E và F đối xứng qua ABb) MEBF là hình thoic) Hbh ABCD phải có thêm điều kiện gì để BCNE là hình thang cân?Bài 2: Cho tam giác ABC cân tại A. Đường cao AH và E, M thứ tự là trung điểm AB và AC.a) chứng minh AH là trục đối xứng...
Đọc tiếp

Bài 1: Cho hbh ABCD. Trên các cạnh AB, CD lần lượt lấy các điểm M, N sao cho AM=DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E, F. Chứng minh rằng:

a) E và F đối xứng qua AB

b) MEBF là hình thoi

c) Hbh ABCD phải có thêm điều kiện gì để BCNE là hình thang cân?

Bài 2: Cho tam giác ABC cân tại A. Đường cao AH và E, M thứ tự là trung điểm AB và AC.

a) chứng minh AH là trục đối xứng của tam giác ABC?

b) các tứ giác EMCB, BEMH, AEHM là hình gì? vì sao?

c) tìm điều kiện tam giác ABC để AEHM là hình vuông?

Trong trường hợp này tính diện tích tam giác BHE. Biết AB=4cm

Bài 3: Gọi E, F lần lượt là trung điểm AB, AC của tam giác ABC.

a) Tứ giác EFCB là hình gì? vì sao?

b) CE và BF cắt nhau tại G. Gọi K, H thứ tự là trung điểm của GC và GB. Chứng minh EFKH là hình bình hành.

c) Tìm điều kiện của tam giác ABC để EFKH là hình chữ nhật.

Khi đó so sánh diện tích EFKH với diện tích tam giác ABC

Vẽ hình và giải giúp mình nha. (bài nào làm được thì làm ạ)

Mình đang cần gấp.

Mơn nhìu~~

 

1
9 tháng 6 2019

1A)  Gọi I là giao điểm của EF và AB                                                                                                                                                                   Vì EF là đường trung trực của MB nên BE=BF                                                                                                                                             xét hai tam giác BEI và BFI thì chúng bằng nhau ( t. hợp ch-cgv)                                                                                                                 IE=IF; EF vuông góc AB  =) E và F đối xứng nhau qua AB nên ta chứng minh  được hai tam giác BEI và BF1 bằng nhau.                   1b) gọi I là giao điểm của MB và EF
ta có EI là đường trung bình của tam giác MEB 
nên tam giác MEB cân tại E => góc EMB = góc EBM
có EI là đường cao đồng thời là đường phân giác
nên góc MEI = góc BEI
ta có MN//BC//AD
hay ME//BF
nên góc MFI = góc IFB; góc EMB = góc FBM ( 2 góc slt)
mà góc MEI = góc BEI 
nên góc IFB = góc BEI
=> tam giác BEF cân tại B
lại có BI là tia phân giác (góc EBI = góc FBI=góc EMI)
hay BI là đường trung tuyến
ta có EF vuông góc với MB 
I là trung điểm của MB và EF
nên tứ giác MEBF là hình thoi                                                                                                                                                                   1c)*Vì EB // NC nên EBCN là hình thang có 2 đáy là EB và NC
để EBCN là hình thang cân thì EN = BC

11 tháng 11 2018

MỌI NGƯỜI GIÚP MÌNH TRONG HÔM NAY VỚI Ạ !!! MAI MÌNH KIỂM TRA RÙI !!! THANK KIU EVERYONE,  MONG NHẬN ĐK CÂU TRẢ LỜI SỚM ( MÀ MỌI NGƯỜI KHÔNG CẦN VX HÌNH ĐÂU Ạ ^^)

11 tháng 11 2018

1)      a.   xét trong tam giác ABC có

           I trung điểm AB và K trung điểm AC  =>IK là đường trung bình của tam giác ABC=>IK song song với BC

            vậy BCKI là hình thang (vì có hai cạng đáy song song)

          b.

            IK  // và =1/2BC   (cm ở câu a)   =>IK song  song NM

            M trung điểm HC  và N trung điểm HB  mà HB+HC=CB =>MN=IK=1/2BC

            suy ra MKIN là hbh => có hai đường chéo bằng nhau =>IM=NK

mình cần gấp nhưng ai làm dk bài nào thì làm nha, có hình càng tốtBài 1: Tam giác ABC vuông cân taij A. M là trung điểm BC. Qua M kẻ các dường thảng song song với AC, AB Cát AB, AC tại E và F. a, chứng minh AEMF là hình chữ nhật ,b, O là trung điểm AM, D là trung Điểm MC. Chứng Minh OMDF là Hình Thoi.C, biết AM 4cm. tính diện tích AEMFBài 2: Cho hình bình hành ABCD, có AB=2AD. Gọi E, F lần lượt là trung điểm của...
Đọc tiếp

mình cần gấp nhưng ai làm dk bài nào thì làm nha, có hình càng tốt

Bài 1: Tam giác ABC vuông cân taij A. M là trung điểm BC. Qua M kẻ các dường thảng song song với AC, AB Cát AB, AC tại E và F.

a, chứng minh AEMF là hình chữ nhật ,

b, O là trung điểm AM, D là trung Điểm MC. Chứng Minh OMDF là Hình Thoi.

C, biết AM 4cm. tính diện tích AEMF

Bài 2: Cho hình bình hành ABCD, có AB=2AD. Gọi E, F lần lượt là trung điểm của AB, CD

a, Cm AEFD là Hình thoi

b, AF cát DE tại M, BF cắt CE tại N. CM MENF là hình chữ nhật

c, Chứng minh MN, FE, AC, BD đồng quy

Bài 4: Hình chữ nhật ABCD, O là giao ddiemr 2 đường chéo. E đối xứng vs D qua C

a, Cm ABEC là hình bình hành

b, F là trung điểm BE. Tứ giác BDCF là hình gì? vì sao?

c, Cm tứ giác DOFE là Hình thang cân

d, hình chữ nhật ABCD cân để BOCF là hình vuông

2
24 tháng 12 2015

DÀI QUÁ LÀM XONG CHẮC VÀO BỆNH VIỆN

25 tháng 12 2015

câu 1

a) ta có MF // AB,BA vuông góc AC=> MF vuông góc AC=> MFA=90 độ

tương tự góc EAF=90 độ

tứ giác AEMF có góc EAF=MFA=AEM =90 độ=> tứ giác AEMF là hcn

b) tam giác ABC co AM la T tuyến ung voi canh huyền BC=> AM=1/2BC,MC=1/2BC=> AM=MC=> tam giác AMC cân tai M

=> MF là T tuyến => Flà tđ cua AC

xét tam giác MAC=> DF là đtb cua tam giác AMC => DF//AM=> DF//OM (1)

tương tự OF // MD (2) 

từ (1),(2) => T giác OMDF là hbh (3)

ta lai co OM=1/2AM,MD=1/2MC mà AM=MC => OM=DM (4)

từ (3),(4) => T giác OMDF la hình thoi

c) ta có tam giác ABC vuông can tai A=> góc BCA=45 độ

mà góc BCA= MAC=góc MAC =45 dộ=> tam giác MFA vuông can tai F

áp dung Pitago => AF=2 căn 2 cm, ma AF=FM=> AF=FM=2 căn 2 cm 

diện tích AEMF=AF.FM=2cAn 2.2can 2=8 cm vuông

27 tháng 12 2019

bài này mình chưa học nhưng nó tương tự như bài này dưới đây mình đã học

Xét tam giác ABC:

Ta có: EB = EA, FA = FC (gt)

Nên EF // BC, EF = 1/2  BC.

Xét tam giác BDC có: HB = HD, GD = GC (gt)

Nên HG // BC, HG =  1/2  BC.

Do đó EF //HG, EF = HG.

Tương tự EH // FG, EH = FG

Vậy EFGH là hình bình hành.

a) EFGH là hình chữ nhật ⇔ EH ⊥ EF ⇔ AD ⊥ BC

b) EFGH là hình thoi ⇔ EH = EF ⇔ AD = BC

c)  EFGH là hình vuông ⇔ AD ⊥ BC và AD = BC

Ko có cái quần què gì để gửi nên viết ra đây các OLMERS  đừng trả lời nhé plzko trả lời ra dưới câu hỏi mình nhé các OLMERS. Ai trả lời dưới câu hỏi là coi như không biết đọc chữ đáy nhé :))Bài 1: Cho tứ giác ABCD có BC=AD và BC không song song với AD. Gọi M,N,P,Q,E,F lần lượt là trung điểm của các đoạn thẳng AB,BC,CA,DA,AC,BD.a) Chứng minh tứ giác MEPF là hình thoib) Chứng minh các đoạn...
Đọc tiếp

Ko có cái quần què gì để gửi nên viết ra đây các OLMERS  đừng trả lời nhé plz

ko trả lời ra dưới câu hỏi mình nhé các OLMERS. Ai trả lời dưới câu hỏi là coi như không biết đọc chữ đáy nhé :))

Bài 1: Cho tứ giác ABCD có BC=AD và BC không song song với AD. Gọi M,N,P,Q,E,F lần lượt là trung điểm của các đoạn thẳng AB,BC,CA,DA,AC,BD.

a) Chứng minh tứ giác MEPF là hình thoi

b) Chứng minh các đoạn thẳng MP,NQ,EF cùng cắt nhau tại một điểm 

c) Tìm thêm điều kiện của tứ giác ABCD để N,E,F,Q thẳng hàng

Bài 2: Cho tam giác ABC vuông tại A ( AB<AC ),M là trung điểm của BC,từ M kẻ đường thẳng song song với AC,AB lần lượt cắt AB tại E, cắt AC tại F.

a) Chứng minh EFCB là hình thang

b) Chứng minh AEMF là hình chữ nhật

c) Gọi O là trung điểm của AM.Chứng minh E và F đối xứng qua O

d) Gọi D là trung điểm của MC. Chứng minh OMDF là hình thoi.

Bài 3:Cho hình bình hành ABCD , trên AC lấy 2 điểm M và N sao cho AM=CN

a) Tứ giác BNDM là hình gì?

b) hình bình hành ABCD phải thêm điều kiện gì? Thì BNDM là hình thoi

c) BM cắt AD tại K . Xác định vị trí của M để K là trung điểm của AD.

d) Hình bình hành ABCD thỏa mãn cả 2 điều kiện ở b,c thì phải thêm điều kiện gì để BNDM là hình vuông

 

0
Bài 1: Cho hình bình hành ABCD, E và F lần lượt là trung điểm của AB,CD. Gọi M,N lần lượt là giao điểm của AF, CE với BD.a) CM: tứ giác AECF là hình bình hànhb) CM: DM=MN=NBc) CM: MNEF là hình bình hànhd) AN cắt BC ở I, Cm cắt AD ở J. Cm: IJ,MN,EF đồng quy.Bài 2 : Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH vuông góc với AB ( H thuộc AB), MK vuông góc với AC ( k thuộc AC).a) CM: Tứ giác...
Đọc tiếp

Bài 1: Cho hình bình hành ABCD, E và F lần lượt là trung điểm của AB,CD. Gọi M,N lần lượt là giao điểm của AF, CE với BD.

a) CM: tứ giác AECF là hình bình hành

b) CM: DM=MN=NB
c) CM: MNEF là hình bình hành

d) AN cắt BC ở I, Cm cắt AD ở J. Cm: IJ,MN,EF đồng quy.

Bài 2 : Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH vuông góc với AB ( H thuộc AB), MK vuông góc với AC ( k thuộc AC).

a) CM: Tứ giác AKMH là hình chữ nhật.

b) E là trung điểm của MH. CM: BHKM là hình bình hành.

c) CM: 3 điểm B,E,K thẳng hàng.

d) F là trung điểm của MK. Đường thẳng HK cắt AE tại I và AF tại J. Cm: HI=KJ.

Bài 3 : Cho tam giác ABC vuông tại C. Gọi M,N lần lượt là trung điểm của BC và AB. Gọi điểm P đôi xứng với M qua N.

a) tứ giác ANMC là hình gì? Vì sao?
b) CM: tứ giác MBPA là hình bình hành.

c) CM: tứ giác PACM là hình chữ nhật.

d) Đường thẳng CN cắt PB tại Q. CM: BQ=2PQ

Bài 4: Cho tam giác ABC có M,N lần lượt là trung điểm của AB và AC.

a) tứ giác BMNC là hình gì? vì sao?

b) Gọi I là trung điểm của MN. Đường thẳng AI cắt BC tại K. CM: AMNK là hình bình hành

c) tam giác ABC cần có điều kiện gì thì tú giác AMNK là hình thoi.

d) Với điều kiện trên của tam giác ABC, vẽ KH vuông góc với AC tại H. đường thẳng KH cắt MN tại E. CM: Tam giác AME là tam giác vuông.












































MÌNH CẦN GẤP MẤY BÀI NÀY. AI LÀM ĐỦ MIK TICK CHO NHA!

0