Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a, A= n+3 / n-1
A = n-1+4 / n-1
A = 1 + 4/n-1
Để A là số nguyên thì 4/n-1 nguyên
=>4 chia hết n-1
=> n-1 thuộc Ư(4)={1;-1;2;-2;4;-4}
=> n thuộc {2;0;3;-1;4;-3}
b, B = 2n+3 / n-1
B = 2(n-1) + 5 / n-1
B= 2 + 5/n-1
Để B nguyên thì 5/n-1 nguyên
=> 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={1;-1;5;-5}
=> n thuộc {2;0;6;-4}
a, =-25.21.4.(-3).(-1)
=-25.4.21.4
=-100.21.4
=-2100.4
=-8400
b, =-125.67.(-8).1
=-125.(-8).67
=1000.67
=67000
c, =35.18-35.28
=35.(18-28)
=35.(-10)
=-350
d, =24.11-16.24+16.5
=24.(11-16)+16.5
=24.(-5)+16.5
=5.(-24+16)
=5.(-8)
=-40
e, =29.6-19.29+19.13
=29.(6-19)+19.13
=29.(-13)+19.13
=13.(-29+19)
=13.(-10)
=-130
1)-(a+b-c)+(a-b-c)=a-b+c+a-b-c=-2b
2)a(b+c)-a(b+d)=a(b+c-b-d)=a(c-d)
3)a(b-c)+a(d+c)=a(b-c+d+c)=a(b+d)
chúc hok tốt :))))))
ak ở câu 1 sửa lại chút
1)-(a+b-c)+(a-b-c)=-a-b+c+a-b-c=-2b
b, (a-b)(a+b)
= a(a+b) -b(a+b)
= aa + ab -ba - bb
= aa - bb
= a^2 - b^2
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon
Bài 1 :
Ta có : P = a.{ ( a - 3 ) - [(a+3) - [ ( a + 2 ) - (a - 2 )]}
= a . { ( a - 3 ) - [ ( a + 3 ) - ( -a - 2 )]}
= a . ( a - 3 -a - 3 - a + 2 )
= a . ( - a - 8 ) = -8a -a2
: Q = [a +( a + 3 ) ] - [ ( a + 2 ) - ( a - 2 ) ]
= a + a + 3 - a - 2 - a - 2
= -1
Ta thấy -1> -8a - a2 => Q > P
Bài 2 :
Ta có : a - ( b - c ) = ( a - b ) + c = ( a + c ) - b
<=> a - b + c = a - b + c = a + c - b
do a = a ; b = b ; c = c => 3 vế bằng nhau (đpcm)
Bài 3:
a) ( a - b ) + ( c - d ) = ( a + c ) - ( b + d )
<=> a - b + c - d = a + c - b - d
<=> a - a + c - c - b + b - d + d = 0
<=> 0 = 0 => VP = VT ( đpcm)
b) a - b - ( c- d ) = ( a + d ) - ( b + c )
<=> a - b - c + d = a + d - b -c
<=> a - a - b + b - c + c + d -d = 0
<=> 0 =0 => VP = VT ( đpcm )