<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

b: \(=\left(x-y\right)^2-4y^2\)

\(=\left(x-y-2y\right)\left(x-y+2y\right)\)

\(=\left(x-3y\right)\left(x+y\right)\)

c: \(=x\left(x-6\right)+y\left(x-6\right)\)

\(=\left(x-6\right)\left(x+y\right)\)

25 tháng 10 2020

khó thế nhờ (^o^)

1.Hãy phân tích các đa thức sau thành nhân tửa) x2−2xy+x3yb) 7x2y2+14xy2−212yc) 10x2y+25x3+xy2 2.Chứng minh với mọi số nguyên nn , (2n+1)3−(2n+1) chia hết cho 24. 3.Hãy phân tích các đa thức sau thành nhân tửa) x(x−2)+2(2−x)b) 4(x+1)3−x−1c) 5x(x−3)+(x−3)2−(x−3) 4.Tính giá trị biểu thức: A=x3−2x2y+xy2 với =117,y=17.5.Tìm xxa) 4x(x+1)=x+1b) 2x(x2+1)−2x2(x+1)=0 6.Chứng minh bình phương của 1 số nguyên...
Đọc tiếp

1.Hãy phân tích các đa thức sau thành nhân tử
a) x2−2xy+x3y
b) 7x2y2+14xy2−212y
c) 10x2y+25x3+xy2

 

2.Chứng minh với mọi số nguyên nn , (2n+1)3−(2n+1) chia hết cho 24.

 

3.Hãy phân tích các đa thức sau thành nhân tử
a) x(x−2)+2(2−x)
b) 4(x+1)3−x−1
c) 5x(x−3)+(x−3)2−(x−3)

 

4.Tính giá trị biểu thức: A=x3−2x2y+xy2 với =117,y=17.

5.Tìm xx
a) 4x(x+1)=x+1
b) 2x(x2+1)−2x2(x+1)=0

 

6.Chứng minh bình phương của 1 số nguyên lẻ luôn chia 8 dư 1.

 

7.Tính nhanh: 81.67+81.44−81.11

 

8.Chứng minh rằng các biểu thức sau luôn nhận giá trị không âm với mọi giá trị của biến
a) x(x+2)+2x+4
b) 3x(x+1)+3(x+1)+5

 

9.Chứng minh đẳng thức
a) (x−2)2+(x−2)=(x−1)2−(x−1)
b) (x3−27)−9(x−3)=x(x2−9)

 

10.Tìm 3 số nguyên liên tiếp biết rằng hiệu giữa tích 3 số với lập phương số ở giữa bằng 1

 

3
9 tháng 8 2020

Giúp mk!! 

9 tháng 8 2020

a. \(x^2-2xy+x^3y=x\left(x-2y+x^2y\right)\)

b. \(7x^2y^2+14xy^2-21^2y=7y\left(x^2y+2xy-63\right)\)

c. \(10x^2y+25x^3+xy^2=x\left(5x+y\right)^2\)

9 tháng 9 2020

1. \(x^4+6x^3+11x^2+6x+1=0\)

\(\Leftrightarrow x^4+6x^3+9x^2+2x^2+6x+1=0\)

\(\Leftrightarrow\left(x^2+3x+1\right)^2=0\)

\(\Leftrightarrow x^2+3x+1=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{4}=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=\frac{5}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{2}=\frac{\sqrt{5}}{2}\\x+\frac{3}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=-\frac{3+\sqrt{5}}{2}\end{cases}}\)

10 tháng 9 2020

2. \(x^4+x^3-4x^2+x+1=0\)

\(\Leftrightarrow\left(x^4+2x^2+1\right)+2.\frac{x}{2}\left(x^2+1\right)+\left(\frac{x}{2}\right)^2-\left(\frac{5}{2}x\right)^2=0\)

\(\Leftrightarrow\left(x^2+1+\frac{x}{2}\right)^2-\left(\frac{5}{2}x\right)^2=0\)

\(\Leftrightarrow\left(x^2-1\right)^2\left(x^2+3x+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\x^2+3x+1=0\end{cases}}\)

+) ( x - 1 )2 = 0

<=> x - 1 = 0

<=> x = 1

+) x2 + 3x + 1 = 0

<=> ( x + 3/2 )2 - 5/4 = 0

<=> ( x + 3/2 )2 = 5/4

<=> \(\hept{\begin{cases}x+\frac{3}{2}=\frac{\sqrt{5}}{2}\\x+\frac{3}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=-\frac{3+\sqrt{5}}{2}\end{cases}}\)

Vậy pt có tập nghiệm \(S=\left\{1;\frac{-3+\sqrt{5}}{2};-\frac{3+\sqrt{5}}{2}\right\}\)

27 tháng 8 2020

a)

 x4 + 6x3 + 11x2 + 6x + 1 = 0

<=> ( x2 + 3x + 1 ) 2 = 0

<=> x2 + 3x + 1 = 0                       

EZ

b)

x4 + x3 – 4x2 + x + 1 = 0

<=> ( x - 1 )2 ( x2 + 3x + 1 ) = 0

EZ

c

x4 – 10x3 + 26x2 – 10x + 1 = 0

<=> ( x2 - 6x + 1 ) ( x2 - 4x + 1 ) = 0

EZ

x4 + 7x3 + 14x2 + 14x + 4 = 0

<=> ( x2 + 2x + 2 ) ( x2 + 5x + 2 ) =0

EZ

Mình làm mẫu 4 câu thôi 5 câu sau bạn tự làm nhá

7 tháng 11 2021

Dùng hằng đẳng thức số 1 : (a + b)với a = (2x -1) và b =(x+1)

(2x - 1) 2 + 2(2x-1) (x+1) + (x+1)2   = (2x -1 + x +1)=  (3x)2 = 9x2

19 tháng 8 2020

a. \(2x^3+3x^2+2x+3=2x\left(x^2+1\right)+3\left(x^2+1\right)=\left(2x+3\right)\left(x^2+1\right)\)

b. \(a^2-ab+a-b=a\left(a+1\right)-b\left(a+1\right)=\left(a-b\right)\left(a+1\right)\)

c. \(2x^2+4x+2-2y^2=2\left(x^2+2x+1-y^2\right)=2\left(x+1+y\right)\left(x+1-y\right)\)

d. \(x^4-2x^3+10x^2-20x=x\left(x^3-2x^2+10x-20\right)\)

\(==x.x\left(x^2+10\right)-2\left(x^2+10\right)=x\left(x-2\right)\left(x^2+10\right)\)

e. \(x^3+2x^2+x=x^2\left(x+1\right)+x\left(x+1\right)=\left(x^2+x\right)\left(x+1\right)\)

f. \(xy+y^2-x-y=x\left(y-1\right)+y\left(y-1\right)=\left(x+y\right)\left(y-1\right)\)

19 tháng 8 2020

a) 2x3 + 3x2 + 2x + 3

= ( 2x3 + 2x ) + ( 3x2 + 3 )

= 2x( x2 + 1 ) + 3( x2 + 1 )

= ( x2 + 1 )( 2x + 3 )

b) a2 - ab + a - b

= ( a2 + a ) - ( ab + b )

= a( a + 1 ) - b( a + 1 )

= ( a - b )( a + 1 )

c) 2x2 + 4x + 2 - 2y2

= ( 2x2 - 2y2 ) + ( 4x + 2 )

= 2( x2 - y2 ) + 2( 2x + 1 )

= 2( x2 - y2 + 2x + 1 )

= 2[ ( x2 + 2x + 1 ) - y2 ]

= 2[ ( x + 1 )2 - y2 ]

= 2( x - y + 1 )( x + y + 1 )

d) x4 - 2x3 + 10x2 - 20x

= x( x3 - 2x2 + 10x - 20 )

= x[ ( x3 - 2x2 ) + ( 10x - 20 ) ]

= x[ x2( x - 2 ) + 10( x - 2 ) ]

= x( x - 2 )( x2 + 10 )

e) x3 + 2x2 + x = x( x2 + 2x + 1 ) = x( x + 1 )2

f) xy + y2 - x - y

= ( xy - x ) + ( y2 - y )

= x( y - 1 ) + y( y - 1 )

= ( x + y )( y - 1 )

9 tháng 5 2019

Ta có:a2+b2+c2\(\ge\)-ab-bc-ac

Thật vậy:

a2+b2\(\ge\)-2ab

b2+c2\(\ge\)-2bc

a2+c2\(\ge\)-2ac

Cộng vế theo vế, ta được:2(a2+b2+c2)\(\ge\)-2ab-2ac-2bc=>a2+b2+c2\(\ge\)-ab-bc-ac

M=a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)\(\ge\)2(a+b+c)

Lại có:2(a+b+c)\(\ge\)-a2-b2-c2-3

Suy ra:M\(\ge\)-a2-b2-c2-3=-4

Vậy GTNN của M=-4

9 tháng 5 2019

L​ê Hồ Trọng Tín ​  \(2\left(a+b+c\right)\ge-a^2-b^2-c^2-3\) Đẳng thức xảy ra khi a=b=c=-1 thay vào M không ra -4 nha, bài làm sai rồi

3 tháng 8 2015

1.thay x=25 vào biểu thức A ta có:

25^3-15.25^2+75.25=8125

2.

a,x^3-3^3-x(x^2-2^2)-1=0

x^3-27-x^3+4x-1=0

4x-28=0

4(x-7)=0

X=7

b,(x^3+3x^2+3x+1)-(x^3-3x^2+3x-1)-6(x^2-2x+1)+10=0

x^3+3x^2+3x+1-X^3+3x^2-3x+1-6x^2+12x-6+10=0

12x+6=0

6(2x+1)=0

2x+1=0

2x=-1

x=-1/2

**** cho mk nha!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!