K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2021

a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)

\(f\left(x\right)-g\left(x\right)=8x\)

 \(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)

 \(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)

 \(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)

b) 8x=0

=> x=0

=> Nghiệm đa thức f(x)-g(x)

c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :

   \(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)

\(=6,75+9-9-2\)

\(=4,75\)

#H

4 tháng 3 2020

Từ giả thiết \(f\left(x_1+x_2\right)=f\left(x_1+x_2\right)\) ta có các biến đổi sau:

\(f\left(2020\right)=f\left(1024\right)+f\left(996\right)\)

\(=f\left(1024\right)+f\left(512\right)+f\left(484\right)\)

\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(228\right)\)

\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(100\right)\)

\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(64\right)\)

\(+f\left(36\right)\)

\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(64\right)\)

\(+f\left(32\right)+f\left(4\right)\)

Dễ tính \(f\left(1024\right)=\)\(2.f\left(512\right)=4.f\left(256\right)=8.f\left(128\right)=16.f\left(64\right)\)

\(=32.f\left(32\right)=64.f\left(16\right)=128.f\left(8\right)=256.f\left(4\right)=512.f\left(2\right)\)

\(=1024.f\left(1\right)=1024\)

Tương tự ta có \(f\left(512\right)=512;f\left(256\right)=256;f\left(128\right)=128;f\left(64\right)=64;\)

\(f\left(32\right)=32;f\left(4\right)=4\)

\(\Rightarrow f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(64\right)\)

\(+f\left(32\right)+f\left(4\right)=2020\)

hay \(f\left(2020\right)=2020\)

Ta có: \(f\left(\frac{1}{x}\right)=\frac{1}{x^2}.f\left(x\right)\)

\(\Rightarrow f\left(\frac{1}{2020}\right)=\frac{1}{2020^2}.2020=\frac{1}{2020}\)

\(\Rightarrow f\left(\frac{3}{2020}\right)=f\left(\frac{2}{2020}\right)+f\left(\frac{1}{2020}\right)\)

\(=f\left(\frac{1}{2020}\right)+f\left(\frac{1}{2020}\right)+f\left(\frac{1}{2020}\right)\)

\(=\frac{1}{2020}.3=\frac{3}{2020}\)

Vậy \(f\left(\frac{3}{2020}\right)=\frac{3}{2020}\)

Bài 1: (2,0 điểm)1. Cho đơn thúca) Thu gọn đơn thức A, xác định hệ số và bậc của đơn thứcb) Tính giá trị của đơn thức A tại x = -2, y = 1/32. Xác định hệ số của m để đa thức f(x) = mx2 + 3(m – 1)x – 16 có nghiệm là -2Câu 2 (2,5 điểm)Cho 2 đa thức:P(x) = 2×2 + 2x – 6×2 + 4×3 + 2 – x3Q(x) = 3 – 2×4 + 3x + 2×4 + 3×3 – xa) Thu gọn và sắp xếp đa thức P(x) và Q(x) theo lũy thừa giảm dần của...
Đọc tiếp

Bài 1: (2,0 điểm)
1. Cho đơn thúc
a) Thu gọn đơn thức A, xác định hệ số và bậc của đơn thức
b) Tính giá trị của đơn thức A tại x = -2, y = 1/3
2. Xác định hệ số của m để đa thức f(x) = mx2 + 3(m – 1)x – 16 có nghiệm là -2
Câu 2 (2,5 điểm)
Cho 2 đa thức:
P(x) = 2×2 + 2x – 6×2 + 4×3 + 2 – x3
Q(x) = 3 – 2×4 + 3x + 2×4 + 3×3 – x
a) Thu gọn và sắp xếp đa thức P(x) và Q(x) theo lũy thừa giảm dần của biến
b) Tìm đa thức C(x) biết C(x) = P(x) + Q(x)
c) Chứng minh đa thức D(x) = Q(x) – P(x) vô nghiệm
Câu 3 (2,0 điểm)
Một giáo viên theo dõi thời gian giải xong một bài tập (tính bằng phút) của học sinh lớp 7A như sau:
a) Dấu hiệu điều tra ở đây là gì? Số các giá trị khác nhau của dấu hiệu là bao nhiêu?
b) Lập bảng tần số và tìm mốt của dấu hiệu
c) Tính số trung bình cộng của dấu hiệu
Câu 4 (3,0 điểm)
Cho tam giác ABC vuông tại A, phân giác BD (D thuộc AC), kẻ DE vuông góc với BC tại E, F là giao điểm của hai đường thẳng DE và AB.
a) Chứng minh AB = EB
b) Chứng minh tam giác ADF bằng tam giác EDC
c) Chứng minh: AE //FC
d) Gọi H là giao điểm của BD và FC. Chứng ming D cách đều các cạnh tam giác AEH
Câu 5 (0,5 điểm)
Cho đa thức f(x) = ax2 + bx + c với các hệ số a, b, c thỏa mãn: 11a – b + 5c = 0
Biết f(1).f(-2) khác 0. Chứng minh rằng f(1) và f(-2) không th

1
30 tháng 7 2019

Bài 3:

a/ Dấu hiệu ở đây là thời gian làm bài ( tính theo phút ) của mỗi học sinh ( ai cũng làm được )
   Có 30 giá trị. Có 6 giá trị khác nhau.
b/  
Giá trị (x)       5        7           8          9          10            14 
Tần số (n)     4        3            8         8           4              3         N= 30

c)  Tính Trung bình cộng:
_
X = 4.5+7.3+8.8+9.8+10.4+14.3 / 30= 259:30 = 8,6 phút

1 tháng 4 2019

\(f\left(x\right)-g\left(x\right)=5x^2-2x+5-\left(5x^2-6x-\frac{1}{3}\right)\)

\(5x^2-2x+5-5x^2+6x+\frac{1}{3}\)

=\(4x+\frac{16}{3}\)

2 tháng 4 2019

sao làm csw mỗi câu z bạn