K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

Cau 20:

a: \(2x^3-8x^2+8x=2x\left(x-2\right)^2\)

b: \(2xy+2x+yz+z=\left(y+1\right)\left(2x+z\right)\)

c: \(x^2+2x+1-y^2=\left(x+1-y\right)\left(x+1+y\right)\)

1 (1,5đ): Phân tích các đa thức sau thành nhân tử:a.2x3 – 8x2 + 8x        b. 2x2 – 3x – 5        c. x2y – x3 – 9y + 9x2 (1đ): Tìm đa thức A biết:A.(2x – 5) = 2x3 – 7×2 + 9x – 103. (3,5đ): Cho biểu thức: P = [(2x – 1)/(x + 3) – x/(3 – x) – (3 – 10x)/(x2 – 9)] : [(x + 2)/(x – 3)]a.Rút gọn P và tìm điều kiện xác định của Pb. Tính giá trị của P khi x2 – 7x + 12 = 0c. Tìm các giá trị nguyên...
Đọc tiếp

1 (1,5đ): Phân tích các đa thức sau thành nhân tử:

a.2x3 – 8x2 + 8x        b. 2x2 – 3x – 5        c. x2y – x3 – 9y + 9x

2 (1đ): Tìm đa thức A biết:

A.(2x – 5) = 2x3 – 7×2 + 9x – 10

3. (3,5đ): Cho biểu thức: P = [(2x – 1)/(x + 3) – x/(3 – x) – (3 – 10x)/(x2 – 9)] : [(x + 2)/(x – 3)]

a.Rút gọn P và tìm điều kiện xác định của P

b. Tính giá trị của P khi x2 – 7x + 12 = 0

c. Tìm các giá trị nguyên của x để P có giá trị nguyên dương

4. (3,5đ): Cho ∆ ABC có 3 góc nhọn và AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. K là điểm đối xứng với H qua M.

a. Chứng minh: Tứ giác BHCK là hình bình hành

b. Chứng minh: BK ⊥ AB và CK ⊥ AC

c. Gọi I là điểm đối xứng với H qua BC. Chứng minh: Tứ giác BIKC là hình thang cân.

d. BK cắt HI tại G. Tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân.

5 (0,5đ): Cho các số x, y thỏa mãn điều kiện:

2x2 + 10y2 – 6xy – 6x – 2y + 10 = 0

Hãy tính giá trị của biểu thức: A = [(x + y – 4)2018 – y2018]/x

 

1
12 tháng 12 2018

\(a,2x^3-8x^2+8x\)

\(=2x^3-4x^2-4x^2+8x\)

\(=\left(2x^3-4x^2\right)-\left(4x^2-8x\right)\)

\(=2x\left(x-2\right)-4x\left(x-2\right)\)

\(=\left(2x-4x\right)\left(x-2\right)\)

\(b,2x^2-3x-5=2x^2-5x+2x-5\)

\(=\left(2x^2-5x\right)+\left(2x-5\right)=x\left(2x-5\right)+\left(2x-5\right)\)

\(=\left(x+1\right)\left(2x-5\right)\)

\(c,x^2y-x^3-9y+9x\)

\(=\left(x^2y-x^3\right)-\left(9y-9x\right)\)

\(=x^2\left(y-x\right)-9\left(y-x\right)\)

\(=\left(x^2-9\right)\left(y-x\right)\)

7 tháng 3 2020

Câu 2:

a) \(ĐKXĐ:x\ne1\)

 \(A=\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right)\div\left(1-\frac{2x}{x^2+1}\right)\)

\(\Leftrightarrow A=\left(\frac{1}{x-1}-\frac{2x}{\left(x-1\right)\left(x^2+1\right)}\right)\div\frac{x^2-2x+1}{x^2+1}\)

\(\Leftrightarrow A=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\div\frac{\left(x-1\right)^2}{x^2+1}\)

\(\Leftrightarrow A=\frac{\left(x-1\right)^2\left(x^2+1\right)}{\left(x-1\right)\left(x^2+1\right)\left(x-1\right)^2}\)

\(\Leftrightarrow A=\frac{1}{x-1}\)

b) Để A > 0

\(\Leftrightarrow x-1>0\)(Vì\(1>0\))

\(\Leftrightarrow x>1\)

Bài 1 (1,5 điểm)Phân tích các đa thức sau thành nhân tử:a)3a3b2−15a2b3a)3a3b2−15a2b3b)5x2−10x+5−20y2b)5x2−10x+5−20y2Bài 2 (3 điểm)Thực hiện phép tính:a) (x−3)(x−6)+x(4−x)(x−3)(x−6)+x(4−x)b) 5xx−1+3x−8x−15xx−1+3x−8x−1c) (x+4)2−25+(3+x)(3−x)(x+4)2−25+(3+x)(3−x)d) 2x−1x+2x+54x−3+2x2+x+33x−4x22x−1x+2x+54x−3+2x2+x+33x−4x2Bài 3 (1,5 điểm)a) Thực hiện phép chia đa...
Đọc tiếp

Bài 1 (1,5 điểm)Phân tích các đa thức sau thành nhân tử:

a)3a3b2−15a2b3a)3a3b2−15a2b3

b)5x2−10x+5−20y2b)5x2−10x+5−20y2

Bài 2 (3 điểm)Thực hiện phép tính:

a) (x−3)(x−6)+x(4−x)(x−3)(x−6)+x(4−x)

b) 5xx−1+3x−8x−15xx−1+3x−8x−1

c) (x+4)2−25+(3+x)(3−x)(x+4)2−25+(3+x)(3−x)

d) 2x−1x+2x+54x−3+2x2+x+33x−4x22x−1x+2x+54x−3+2x2+x+33x−4x2

Bài 3 (1,5 điểm)

a) Thực hiện phép chia đa thức A=x3−7x+3−x2A=x3−7x+3−x2 cho đa thức B=x−3B=x−3 .

b) Gọi Q là thương của phép chia A cho B. Chứng minh Q+3Q+3 luôn nhận giá trị dương với mọi x≠3.x≠3.

Bài 4 (3 điểm)Cho ΔABCΔABCvuông tại A (AB<AC)(AB<AC). Gọi M,N,KM,N,K thứ tự là trung điểm của AB,ACAB,AC  và BCBC.

a)Chứng minh KN=12ABKN=12ABvà ABKNABKN là hình thang vuông.

b)Qua MM kẻ đường thẳng song song với BNBN, cắt tia KNKN tại QQ. Chứng minh AKCQAKCQ là hình thoi.

c)MNMN cắt BQBQ tại OO , AKAK cắt BNBN tại II. Biết BC=24cmBC=24cm. Tính độ dài OIOI.

Bài 5 (1 điểm)Trong hình vẽ sau, hai địa điểm A và B cách nhau 100km100km. Một xe ô tô khởi hành từ B đến A với vận tốc 40km/h40km/h. Cùng lúc đó, một xe đạp điện cũng khởi hành từ A trên đoạn đường vuông góc với AB với vận tốc 20km/h20km/h. Gọi C, D thứ tự là vị trí của xe ô tô và xe đạp điện vào thời điểm t(h) sau khi khởi hành. Giả sử vận tốc của hai xe không thay đổi trong quá trình di chuyển.

a)Viết biểu thức đại số biểu diễn độ dài AC,ADAC,AD  theo tt.

b)Hỏi sau bao lâu (tính từ lúc khởi hành) khoảng cách CDCD là ngắn nhất? Giải thích.

 

1

Cậu có thể viết thêm dấu mũ vào được ko? Tớ đọc.....ko hiểu lắm....

Cảm ơn~

Bài 1:

a)    \(x^3-5x^2+8x-4\)

\(=x^3-4x^2+4x-x^2+4x-4\)  \(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)\(=\left(x-1\right)\left(x-2\right)^2\)

b) Ta có:  \(\frac{A}{M}=\frac{10x^2-7x-5}{2x-3}=5x+4+\frac{7}{2x-3}\)

   Với \(x\in Z\)thì  \(A⋮M\)khi \(\frac{7}{2x-3}\in Z\)\(\Rightarrow7⋮\left(2x-3\right)\)\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow=\left\{1;5;\pm2\right\}\)thì khi đó \(A⋮M\)

17 tháng 8 2019

Các bài làm này có đúng ko ạ, ai đó duyệt giúp em, em cảm ơn.

Bài 1:

a)x3-5x2+8x-4=x3-4x2+4x-x2+4x-4

=x(x2-4x-4)-(x2-4x+4)

=(x-1) (x-2)2

b)Xét:

\(\frac{a}{b}-\frac{10x^2-7x-5}{2x-3}\)

=\(5x+4+\frac{7}{2x-3}\)

Với x thuộc Z thì A /\ B khi \(\frac{7}{2x-3}\) thuộc  Z => 7 /\ (2x-3)

Mà Ư(7)={-1;1;-7;7} => x=5;-2;2;1 thì A /\ B

c)Biến đổi \(\frac{x}{y^3-1}-\frac{x}{x^3-1}=\frac{x^4-x-y^4+y}{\left(y^3-1\right)\left(x^3-1\right)}\)

=\(\frac{\left(x^4-y^4\right)\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)(do x+y=1=>y-1=-x và x-1=-y)

=\(\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{xy\left[x^2y^2+y^2x+y^2+xy^2+xy+y+x^2+x+1\right]}\)

=\(\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)

=\(\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)

=\(\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+3\right)}\)

=\(\frac{-2\left(x-y\right)}{x^2y^2+3}\)Suy ra điều phải chứng minh

Bài 2 )

a)(x2+x)2+4(x2+x)=12 đặt y=x2+x

   y2+4y-12=0 <=>y2+6y-2y-12=0

<=>(y+6)(y-2)=0 <=> y=-6;y=2

>x2+x=-6 vô nghiệm vì x2+x+6 > 0 với mọi x

>x2+x=2 <=> x2+x-2=0 <=> x2+2x-x-2=0

<=>x(x+2)-(x+2)=0 <=>(x+2)(x-1) <=>  x=-2;x-1

Vậy nghiệm của phương trình x=-2;x=1

b)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+\frac{x+4}{2005}+\frac{x+5}{2004}\)\(+\frac{x+6}{2003}\)

=\(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)+\left(\frac{x+4}{2005}+1\right)\)\(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)

<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}\)\(+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)

<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}\)\(-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)

Nhờ OLM xét giùm em vs ạ !

Bài 1 (2 điểm)Phân tích các đa thức sau thành nhân tử:a)2x3−50x2x3−50xb)x2−6x+9−4y2x2−6x+9−4y2c)x2−7x+10x2−7x+10Bài 2 (1,5 điểm)a.Làm tính chia: (12x6y4+9x5y3−15x2y3):3x2y3(12x6y4+9x5y3−15x2y3):3x2y3b. Rút gọn biểu thức: (x2−2)(1−x)+(x+3)(x2−3x+9)(x2−2)(1−x)+(x+3)(x2−3x+9)Bài 3 (2,5 điểm)Cho biểu thức: A=5x+3−23−x−3x2−2x−9x2−9A=5x+3−23−x−3x2−2x−9x2−9 (với x≠±3x≠±3)a)Rút gọn biểu...
Đọc tiếp

Bài 1 (2 điểm)Phân tích các đa thức sau thành nhân tử:

a)2x3−50x2x3−50x

b)x2−6x+9−4y2x2−6x+9−4y2

c)x2−7x+10x2−7x+10

Bài 2 (1,5 điểm)

a.Làm tính chia: (12x6y4+9x5y3−15x2y3):3x2y3(12x6y4+9x5y3−15x2y3):3x2y3

b. Rút gọn biểu thức: (x2−2)(1−x)+(x+3)(x2−3x+9)(x2−2)(1−x)+(x+3)(x2−3x+9)

Bài 3 (2,5 điểm)Cho biểu thức: A=5x+3−23−x−3x2−2x−9x2−9A=5x+3−23−x−3x2−2x−9x2−9 (với x≠±3x≠±3)

a)Rút gọn biểu thức AA.

b)Tính giá trị của AA khi |x−2|=1|x−2|=1

c)Tìm giá trị nguyên của xx đểAA có giá trị nguyên.

Bài 4 (3,5 điểm)Cho ΔABCΔABCvuông tại AA, gọi MM là trung điểm của ACAC. Gọi DD là điểm đối xứng với BB  qua MM.

a)Chứng minh tứ giác ABCDABCD là hình bình hành.

b)Gọi NN là điểm đối xứng với BB  qua AA. Chứng minh tứ giác ACDNACDN là hình chữ nhật.

c)Kéo dài MNMN cắt BCBC tại II. Vẽ đường thẳng qua AA song song với MNMN cắt BCBC ởKK. Chứng minh: KC=2BKKC=2BK

d)Qua BB kẻ đường thẳng song song với MNMN cắt ACAC kéo dài tại EE . Tam giác ABCABC cần có thêm điều kiện gì để tứ giác EBMNEBMN là hình vuông.

Bài 5 (0,5 điểm)Cho aa thỏa mãn: a2−5a+2=0a2−5a+2=0. Tính giá trị của biểu thức:P=a5−a4−18a3+9a2−5a+2017+(a4−40a2+4):a2


 

0
Bài 1. Thực hiện các phép tính sau :a) \(\frac{x+3}{x+1}-\frac{x-3}{x^2-1}-\frac{2x-1}{x-1}\)b) \(\frac{1}{x\left(x+y\right)}+\frac{1}{x\left(x-y\right)}+\frac{1}{y\left(y+x\right)}+\frac{1}{y\left(y-x\right)}\)Bài 2. Phân tích đa thức sau thành nhân tử : P(x) = (x + a)(x + 2a)(x + 3a)(x + 4a) - 15a4Bài 3. Giải phương trình : x4 + 3x3 + 4x2 + 3x + 1 = 0Bài 4. Tìm GTLN và GTNN của biểu thức : \(A=\frac{3-4x}{x^2+1}\)Bài 5. Cho hình thang ABCD (AB // CD)....
Đọc tiếp

Bài 1. Thực hiện các phép tính sau :

a) \(\frac{x+3}{x+1}-\frac{x-3}{x^2-1}-\frac{2x-1}{x-1}\)

b) \(\frac{1}{x\left(x+y\right)}+\frac{1}{x\left(x-y\right)}+\frac{1}{y\left(y+x\right)}+\frac{1}{y\left(y-x\right)}\)

Bài 2. Phân tích đa thức sau thành nhân tử : P(x) = (x + a)(x + 2a)(x + 3a)(x + 4a) - 15a4

Bài 3. Giải phương trình : x4 + 3x3 + 4x2 + 3x + 1 = 0

Bài 4. Tìm GTLN và GTNN của biểu thức : \(A=\frac{3-4x}{x^2+1}\)

Bài 5. Cho hình thang ABCD (AB // CD). Các tia phân giác của góc A và góc D cắt nhau ở I; các tia phân giác của góc B và góc C cắt nhau ở J. Gọi M, N lần lượt là trung điểm của AD và BC. Chứng minh bốn điểm M, N, I, J thẳng hàng.

Bài 6. Cho hình bình hành ABCD. Trên các cạnh AB, BC, CD và DA ta dựng về phía ngoài các hình vuông lần lượt có tâm là O1, O2, O3, O4. Chứng minh tứ giác O1O2O3O4 là hình vuông.

(Các bạn có thể giải bất kì câu nào mà các bạn muốn)

0
19 tháng 9 2020

Câu 1.

B = ( 3x + 5 )( 2x + 1 ) + ( 4x - 1 )( 3x + 2 )

= 6x2 + 3x + 10x + 5 + 12x2 + 8x - 3x - 2

= 18x2 + 18x + 3

| x | = 2 => x = ±2

Với x = 2 => B = 18.22 + 18.2 + 3 = 111

Với x = -2 => B = 18.(-2)2 + 18.(-2) + 3 = 39

C = ( 2x + y )( 2x + y ) + ( x - y )( y - z )

= 4x2 + 4xy + y2 + xy - xz - y2 + yz

= 4x2 + 5xy - xz + yz

Với x = 1 ; y = 1 ; z = 1 => C = 4.12 + 5.1.1 - 1.1 + 1.1 = 9

Câu 2.

Gọi ba số tự nhiên cần tìm là a ; a + 1 ; a + 2 ( a ∈ N )

Theo đề bài ta có :

( a + 1 )( a + 2 ) - a( a + 1 ) = 50

<=> a2 + 3a + 2 - a2 - a = 50

<=> 2a + 2 = 50

<=> 2a = 48

<=> a = 24 ( tmđk )

=> a + 1 = 25 ; a + 2 = 26

Vậy ba số cần tìm là 24 ; 25 ; 26 

Câu 3.

Sửa đề một chút : ( x + y )( x3 - x2y + xy2 - y ) = x4 - y4

( x + y )( x3 - x2y + xy2 - y3 )

= x4 - x3y + x2y2 - xy3 + x3y - x2y2 + xy3 - y4

= x4 - y4 ( đpcm )

Câu 1 :

\(a,B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)

\(=6x^2-3x+10x-5+12x^2+8x-3x-2\)

\(=\left(6x^2+12x^2\right)+\left(-3x+10x+8x-3x\right)+\left(-5-2\right)\)

\(=18x^2-4x-7\)

Với \(|x|=2\Rightarrow x=\pm2\)

Với x = 2 => \(B=18.2^2-4.2-7=72-8-7=57\)

Với x = -2 => \(B=18.\left(-2\right)^2-4.\left(-2\right)-7=73\)

Câu b tương tự

Câu 2 :

Gọi 3 số tự nhiên cần tìm là a , a+1 , a+2 .

Vì tích của hai số đầu hỏ hơn tích của hai số sau là 50 nên ta có :

\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)

\(\Leftrightarrow a^2+2a+a+2-a^2-a=50\)

\(\Leftrightarrow\left(a^2-a^2\right)+\left(a-a\right)+2a=50-2\)

\(\Leftrightarrow2a=48\)

\(\Leftrightarrow a=24\)

Vậy ba số tự nhiên cần tìm lần lượt là 24,25,26 .

Câu 3 :

Ta có :

\(\left(x+y\right)\left(x^3-x^2y+xy^2-y^3\right)\)

\(=x^4-x^3y+x^2y^2-xy^3+yx^3-x^2y^2+xy^3-y^4\)

\(=x^4+\left(-x^3y+yx^3\right)+\left(x^2y^2-x^2y^2\right)+\left(-xy^3+xy^3\right)-y^4\)

\(=x^4-y^4\)

=> đpcm