Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
\(A=\frac{-1}{4.5}+\frac{-1}{5.6}+\frac{-1}{6.7}+\frac{-1}{7.8}+\frac{-1}{8.9}+\frac{-1}{9.10}\)
\(-1A=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(-1A=\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(-1A=\frac{1}{4}-\frac{1}{10}\)
\(-1A=\frac{3}{20}\)
\(A=\frac{-3}{20}\)
\(\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
=\(\frac{-1}{4.5}+\frac{-1}{5.6}+\frac{-1}{6.7}+\frac{-1}{7.8}+\frac{-1}{8.9}+\frac{-1}{9.10}\)
=\(\frac{-1}{4}-\frac{-1}{5}_{ }+\frac{-1}{5}-\frac{-1}{6}+\frac{-1}{6}-\frac{-1}{7}+\frac{-1}{7}-\frac{-1}{8}+\frac{-1}{8}-\frac{-1}{9}+\frac{-1}{9}-\frac{-1}{10}\)
=\(\frac{-1}{4}+\frac{1}{5}+\frac{-1}{5}+\frac{1}{6}+\frac{-1}{6}+\frac{1}{7}+\frac{-1}{7}+\frac{1}{8}+\frac{-1}{8}+\frac{1}{9}+\frac{-1}{9}+\frac{1}{10}\)
=\(\frac{-1}{4}+\frac{1}{10}\)
=\(\frac{-3}{20}\)
A= 1/30 +1/42+1/56+1/72+....+1/210
A=1/5x6 +1/6x7+1/7x8+1/8x9+...+1/14x15
A=1/5 -1/6+1/6-1/7+1/7-1/8+1/8-1/9+.....+1/14-1/15
A= 1/5 - 1/15
A= 2/15
\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{210}\)
=\(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{14.15}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{14}-\frac{1}{15}\)=\(\frac{1}{5}-\frac{1}{15}\)
=\(\frac{3}{15}-\frac{1}{15}\)
=\(\frac{2}{15}\)
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{210}\)
\(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+...+\frac{1}{14\cdot15}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{14}-\frac{1}{15}\)
\(A=\frac{1}{5}-\frac{1}{15}=\frac{2}{15}\)
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{210}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{14.15}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{14}-\frac{1}{15}\)
\(A=\frac{1}{5}-\frac{1}{15}\)
\(A=\frac{2}{15}\)
= 1/ 5.6 + 1/ 6.7 + 1/7.8 + 1/8.9 +.....+ 1/ 14.15
= 1/ 5 - 1/6 + 1/6 - 1/7 +......+1/14 - 1/15
= 1/5 - 1/ 15
= 3/15 - 1/15 = 2/ 15
\(A=\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{14.15}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{14}-\frac{1}{15}\)
\(A=\frac{1}{5}-\frac{1}{15}\)
\(A=\frac{2}{15}\)
\(A=\frac{1}{30}+\frac{1}{40}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{210}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{14.15}\)
\(A=\frac{6-5}{5.6}+\frac{7-6}{6.7}+\frac{8-7}{7.8}+\frac{9-8}{8.9}+...+\frac{15-14}{14.15}\)
\(A=1-\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{14}-\frac{1}{15}\)
\(A=1-\frac{1}{15}\)
\(A=\frac{14}{15}\)
\(\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+....+\frac{1}{240}=\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+...+\frac{1}{15.16}\)
\(=\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+...+\frac{1}{15}-\frac{1}{16}=\frac{1}{7}-\frac{1}{16}=\frac{9}{112}\)
\(=\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}+\frac{1}{14.15}+\frac{1}{15.16}\)
\(=\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{16}\)
\(=\frac{1}{7}-\frac{1}{16}\)
\(=\frac{9}{112}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+....+\frac{1}{14.15}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+.....+\frac{1}{14}-\frac{1}{15}\)
\(=\frac{1}{5}-\frac{1}{15}\)
\(=\frac{2}{15}\)
A= 1/30 + 1/42+1/56+1/72+....+1/210
A= 1/5.6+1/6.7+1/7.8+1/8.9+....+1/14.15
A= 1/5
- 1/6+1/6-1/7+1/7-1/8+1/8-1/9+.....+1/14-1/15A= 1/5 - 1/15
A = 2/15