K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2020

Ta có: \(A=1+2+2^2+...+2^{2020}\)

\(\Leftrightarrow2A=2+2^2+2^3+...+2^{2021}\)

Trừ vế 2A cho A ta được:

\(2A-A=\left(2+2^2+...+2^{2021}\right)-\left(1+2+...+2^{2020}\right)\)

\(\Rightarrow A=2^{2021}-1\)

8 tháng 10 2020

Ta có: \(B=1+5+5^2+...+5^{2020}\)

\(\Leftrightarrow5B=5+5^2+5^3+...+5^{2021}\)

Trừ vế 5B cho B ta được:

\(5B-B=\left(5+5^2+...+5^{2021}\right)-\left(1+5+...+5^{2020}\right)\)

\(\Leftrightarrow4B=5^{2021}-1\)

\(\Rightarrow B=\frac{5^{2021}-1}{4}\)

( Mình đang học zoom nên bạn chờ mình chút để mình làm nốt phần còn lại nhé ! )

a) A= 1+32+34+......+32020

=> 32A = 3 + 32+34+......+32022

=> 32A - A = ( 3 + 32+34+......+32022 ) - ( 1+32+34+......+32020 )

=> 9A - A  = 32022 - 1

=> 8A = 32022 - 1

=> A = ( 32022 - 1 ) : 8

27 tháng 8 2021

A= 1+3^2+3^4+......+3^2020

6A= 3^2+3^4+3^6+......+3^2022

6A-A=(3^2+3^4+3^6+......+3^2022)-(1+3^2+3^4+......+3^2020)

5A=3^2022-1

A=(3^2022-1):5

20 tháng 9 2020

+) \(A=3\left(x-4\right)^4-4\ge-4\)

Min A = -4 \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)

+) \(B=5+2\left(x-2019\right)^{2020}\ge5\)

Min B = 5 \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)

+) \(C=5+2018\left(2020-x\right)^2\)

Min C = 5 \(\Leftrightarrow2020-x=0\Leftrightarrow x=2020\)

+) \(D=\left(x-1\right)^{2020}+\left(y+x\right)-1\ge-1\)

Min D = -1 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-x\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)

+) \(E=2\left(x-1\right)^2+3\left(2x-y\right)^4-2\ge-2\)

Min E = -2 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\2x-y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\2x=y\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

10 tháng 10 2020

Câu 1.

C = 5 + 42 + 43 + ... + 42020

a) Xét A = 42 + 43 + ... + 42020

    => 4A = 43 + 44 + ... + 42021

    => 4A - A = 3A

        = 43 + 44 + ... + 42021 - ( 42 + 43 + ... + 42020 )

        = 43 + 44 + ... + 42021 - 42 - 43 - ... - 42020 

        = 42021 - 42

=> A = \(\frac{4^{2021}-4^2}{3}\)

Thế vào C ta được : \(C=5+\frac{4^{2021}-4^2}{3}=\frac{15}{3}+\frac{4^{2021}-4^2}{3}=\frac{4^{2021}+15-16}{3}=\frac{4^{2021}-1}{3}\)

b) D = 42021 => \(\frac{D}{3}=\frac{4^{2021}}{3}\)

Vì 42021 - 1 < 42021 => \(\frac{4^{2021}-1}{3}< \frac{4^{2021}}{3}\)

=> C < D/3

c) Dùng kết quả ý a) ta được :

3C + 1 = 42x-6

<=> \(3\cdot\frac{4^{2021}-1}{3}+1=4^{2x-6}\)

<=> 42021 - 1 + 1 = 42x-6

<=> 42021 = 42x-6

<=> 2021 = 2x - 6

<=> 2x = 2027

<=> x = 2027/2

10 tháng 10 2020

Câu 2.

( x - 1 )( 4 + 22 + 23 + ... + 220 ) = 222 - 221

Xét A = 22 + 23 + ... + 220

=> 2A = 23 + 24 + ... + 221

=> A = 2A - A

         = 23 + 24 + ... + 221 - ( 22 + 23 + ... + 220 )

         = 23 + 24 + ... + 221 - 22 - 23 - ... - 220 

         = 221 - 4

Thế vô đề bài ta được

( x - 1 )( 4 + 221 - 4 ) = 222 - 221

<=> ( x - 1 ).221 = 221( 2 - 1 )

<=> x - 1 = 1

<=> x = 2

23 tháng 11 2015

a) 125x57+27x5^4+5^2x40

=5^3x57+27x5^4+5^2x40

=5^2x(5x57+27x5^2+40)

=25x1000

=25000

18 tháng 1 2020

A=3(x-4)4

Vì (x-4)4 ≥0

=>3(x-4)4 ≥0

Vậy MinA=0

18 tháng 1 2020

B=5+2(x-2019)2020

Vì (x-2019)2020 ≥0

=>5+(x-2019)2020 ≥5

Để B đạt Min 

=>x-2019=0

=>x=2019

Vậy MinB=5 <=>x=2019

17 tháng 11 2018

a)

   \(2A=2+2^2+2^3+...+2^{101}\)

\(2A-A=\left(2+2^2+2^3+....+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)

\(A=2^{101}-1\)

b)

  Tách ra thành 2 tổng :\(D=3+3^3+...+3^{99}\) và \(E=3^2+3^4+...+3^{100}\)

\(3^2D=3^3+3^5+...+3^{101}\)

\(9D-D=\left(3^3+3^5+...+3^{101}\right)-\left(3+3^3+...+3^{99}\right)\)

\(8D=3^{101}-3\Leftrightarrow D=\frac{3^{101}-3}{8}\)

Tương tự \(E=\frac{3^{102}-3^2}{8}\)

Ta có \(D-E=B\)

Do đó \(\frac{3^{101}-3-3^{102}+3^2}{8}\)

Tương tự phần a, b tính được \(C=\frac{5^{202}-1}{24}\)

27 tháng 11 2018

c,\(C=1+5^2+5^4+5^6+...+5^{200}\)

\(\Rightarrow25C=5^2+5^4+5^6+5^8+...+5^{202}\)

\(\Rightarrow25C-C=24C=\left(5^2+5^4+...+5^{202}\right)-\left(1+5^2+...+5^{200}\right)\)

\(=5^{202}-1\)

\(\Rightarrow C=\frac{5^{202}-1}{24}\)

17 tháng 11 2018

A = 1 + 2 + 22 + ... + 2100

=> 2A = 2 + 22 + 23 + ... + 2100 + 2101

=> 2A - A = ( 2 + 22 + 2+ ... + 2100 + 2101 ) - ( 1 + 2 + 22 + ... + 2100 )

=> A = 2101 - 1

17 tháng 11 2018

A = 1 + 2 +22+.....+2100

=>  2A =2  + 22 + 23+...+2100+2101

=> 2A - A = ( 2 + 22+23+.....+2100+2101) - ( 1 + 2 + 22+...+2100)

=> A = 2101 - 1

NM
20 tháng 3 2021

Đặt \(A=2^0+2^1+..+2^{100}\)

\(\Rightarrow2A=2^1+2^2+..+2^{101}\)

lấy hiệu hai phương trình ta có

\(A=2^{101}-2^0=2^{101}-1\)

.\(B=5^1+5^2+..+5^{200}\)

\(\Rightarrow5B=5^2+5^3+..+5^{201}\)

Lấy hiệu hai phương trình ta có :

\(4B=5^{201}-5\Rightarrow B=\frac{5^{201}-5}{4}\)