K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

Đề là phân tích đa thức thành nhân tử hả bn

\(8x^2y^2-12y^3+16x^2\) 

\(4\left(2x^2y^2-3y^3+4x^2\right)\) 

12 tháng 8 2015

a/  2x^3 -5x^2 + 8x -3

= 2x^3 -x^2 -4x^2 +2x +6x -3

= x^2 .[2x-1] - 2x[2x-1] +3. [2x-1]

= [x^2-2x+3] [2x-1]

b/  3x^3 - 14x^2 +4x +3 

= 3x^3 +x^2 -15 x^2 -5x +9x +3

= x^2 [3x+1] -5.x [3x+1] +3. [3x+1]

= [x^2 -5x+3] [3x+1]

c/  Đặt C =  12x^2 + 5 x -12 y^2 +12y -10xy -3

 = -[12y^2+10xy+3-12x^2-5x-12y]

12y^2 + 10xy +3-12x^2-5x-12y = 18xy +12y^2 -6y - 12x^2 -8xy +4x -9x -6y +3

                                             = 6y [3x+2y-1] - 4.x[3x+2y-1] -3.[3x+2y-1]

                                            = [6y-4x-3] [3x+2y-1]

=> C = -[6y-4x-3]. [ 3x+2y-1]

2 tháng 5 2016

tom lai minh ra

12x2+5x-12y2+12y-10xy-3=12(x+(2y-1)/3)(x-(6y-3)/4)) co dung ko nha.

8 tháng 7 2019

\(1a,8x^2y^2-12x^3+6x^2\)

\(=2\left(4x^2y^2-13x^3+3x^2\right)\)

\(b,5x\left(x-y\right)-\left(x-y\right)\)( sai đề hả )

\(=\left(x-y\right)\left(5x-1\right)\)

\(c,4x\left(x-2\right)-\left(2-x\right)^2\)

\(=4x\left(x-2\right)-\left(x-2\right)^2\)

\(=\left(x-2\right)\left(4x-x+2\right)=\left(x-2\right)\left(3x+2\right)\)

\(2,\)\(x\left(x-3\right)-\left(3-x\right)=0\)

\(\Rightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)

8 tháng 7 2019

phần b làm theo đề thôi nhé ko biết đầu bài đúng ko

\(5x\left(x-y\right)-\left(y-y\right)\)

\(=5x\left(x-y\right)\)

HA ha ngắn gọn vãi

8 tháng 7 2019

3. Dễ dàng phân tích được hiệu các bình phương 2 số lẻ bất kỳ bằng :

\(\left(2n+3\right)^2-\left(2n+1\right)^2=\left[\left(2n+3\right)-\left(2n+1\right)\right].\left[\left(2n+3\right)+\left(2n+1\right)\right]\)

\(=2.\left(4n+4\right)=8n+8=8\left(n+1\right)⋮8\left(đpcm\right).\)

16 tháng 6 2018

1. Theo mình là sai đề, không biết có phải vậy không

2. (x^2 - 2.x.5 + 25) + (9y^2 - 2.3.2 +4) =0

(x-5)^2 + (3y-2)^2 = 0

TH1: (x-5)^2 = 0

  x-5=0

x=5

TH2:  (3y-2)^2 =0

3y -2=0

y=2/3

16 tháng 6 2018

1. x2+y2-2x+4y+3=0

<=>(x2-2x+1)+(y2+4y+2)=0

<=>(x-1)2+(y+2)2=0

Mà \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)

15 tháng 7 2019

1)

\(a;4-\left(a-b\right)^2=2^2-\left(a-b\right)^2=\left(2+a-b\right)\left(2-a+b\right)\)

\(b;\left(3x-2y\right)^2-\left(2x-3y\right)^2=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)        

                                                              \(=\left(5x-5y\right)\left(x+y\right)=5\left(x-y\right)\left(x+y\right)\)

\(c;16x^2-0,01=\left(4x\right)^2-0,1^2=\left(4x-0,1\right)\left(4x+0,1\right)\)

2)

\(x^2+16-8x=0\)

\(\Leftrightarrow x^2-8x+16=0\)

\(\Leftrightarrow\left(x+4\right)^2=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

15 tháng 7 2019

\(1.a)\)\(4-\left(a-b\right)^2=\left(2+a-b\right)\left(2-a+b\right)\)

    \(b)\)\(\left(3x-2y\right)^2-\left(2x-3y\right)^2=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)

       \(\left(5x-5y\right)\left(x+y\right)=5\left(x-y\right)\left(x+y\right)\)

    \(c)\)\(16x^2-0,01=16x^2-\frac{1}{100}=\left(4x-\frac{1}{10}\right)\left(4x+\frac{1}{10}\right)\)

\(2.\)Ta có : \(x^2+16-8x=0=>\left(x-4\right)^2=0=>x-4=0=>x=4\)

Vậy \(x=4\)

Đợi nghĩ ra cách ngắn hơn nhá :)) 

\(1)\)\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\)

\(B=-7x^{15}+\left(8x^{15}-8x^{14}\right)+\left(8x^{13}-8x^{12}\right)+...+\left(8x^3-8x^2\right)+\left(8x-8\right)+3\)

\(B=-7x^{15}+8x^{14}\left(x-1\right)+8x^{12}\left(x-1\right)+...+8x^2\left(x-1\right)+8\left(x-1\right)+3\)

\(B=-7x^{15}+8\left(x-1\right)\left(x^{14}+x^{12}+...+x^2+1\right)+3\)

\(B=-7x^{15}+8\left(x-1\right)\left[x^{12}\left(x^2+1\right)+x^8\left(x^2+1\right)+...+\left(x^2+1\right)\right]+3\)

\(B=-7x^{15}+8\left(x-1\right)\left(x^2+1\right)\left(x^{12}+x^8+...+1\right)+3\)

\(B=-7x^{15}+8\left(x-1\right)\left(x^2+1\right)\left[x^8\left(x^4+1\right)+\left(x^4+1\right)\right]+3\)

\(x=7\)\(\Rightarrow\)\(x+1=8\)

\(B=-7x^{15}+\left(x+1\right)\left(x-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)+3\)

\(B=-7x^{15}+\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\)

\(B=-7x^{15}+\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\)

\(B=-7x^{15}+\left(x^8-1\right)\left(x^8+1\right)=-7x^{15}+x^{16}-1=x^{15}\left(x-7\right)-1=-1\)

...

11 tháng 10 2019

Nhanh lên

11 tháng 10 2019

a) 16x2(x - y)2 - 10y(y - x)3

= 16x2(y - x)2 - 10y(y - x)3

= 2(y - x)2[8x2 - 5y(y - x)]

= 2(y - x)2(8x2 + 5xy - 5y2)

b) a2 -b2 + 4ab - 9 (sai đề)

19 tháng 4 2018

Bài 1:

ta có: x=7 => x+ 1 =8

thay vào biểu thức B

\(\Rightarrow B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)      \(B=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...-x^3-x^2+x^2+x-5\)

\(B=x-5\)

\(B=7-5\)

\(B=2\)

Bài 2:

bn tham khảo link dưới nha:

https://olm.vn/hoi-dap/question/982834.html

Bài 3: Bn xem lại giúp mk nha!!! ( Chỗ nếu: thì....)

5 tháng 9 2018

\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)

\(=2\)