Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của DC và BE là O
giao điểm của DC và AB là K
Ta có :
DÂC = DÂK + KÂC = 90° + KÂC
EÂB = EÂC + KÂC = 90° + KÂC
\(\Rightarrow\)DÂC = EÂB
Dễ thấy : \(\Delta\)DAC = \(\Delta\)BAE ( c - g - c )
\(\Rightarrow\)DC = BE ( 2 cạnh tương ứng ) và góc ADK = Góc ABO ( 2 góc tương ứng )
Mà góc DKA = góc BKO ( đối đỉnh )
\(\Rightarrow\)DÂK = BÔK hay DC \(\perp\)BE
Ta có :
M là trung điểm DE
P là trung điểm CE
\(\Rightarrow\)MP là đường trung bình của \(\Delta\)DEC
\(\Rightarrow\)MP // DC và MP = DC / 2 ( 1 )
Vì MP // DC và DC \(\perp\)BE nên MP \(\perp\)BE ( 2 )
Ta lại có :
M là trung điểm DE
N là trung điểm BD
\(\Rightarrow\)MN là đường trung bình của \(\Delta\)DBE
\(\Rightarrow\)MN // BE và MN = BE / 2 ( 3 )
Từ ( 1 ) ; ( 2 ) và ( 3 ) \(\Rightarrow\)\(\Delta\)MNP là tam giác vuông cân tại M .
a) +)Xét tg ABD có: CE //BD(gt)
Áp dụng đl Ta-let, ta có:
AB/AC=AD/AE
+) Xét tam giác ADC có: FE // CD(gt)
Áp dụng đl Ta-let,ta có:
AC/AF=AD/AE
b)Từ câu a), ta có:
AB/AC=AC/AF
->AC.AC=AB.AF
->AC^2=AB.AF