Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3 - 9x2 + 14x = 0
<=> x( x2 - 9x + 14 ) = 0
<=> x( x2 - 2x - 7x + 14 ) = 0
<=> x[ x( x - 2 ) - 7( x - 2 ) ] = 0
<=> x( x - 2 )( x - 7 ) = 0
<=> x = 0 hoặc x = 2 hoặc x = 7
b) x3 - 5x2 + 8x - 4 = 0
<=> x3 - 4x2 - x2 + 4x + 4x - 4 = 0
<=> ( x3 - 4x2 + 4x ) - ( x2 - 4x + 4 ) = 0
<=> x( x2 - 4x + 4 ) - ( x - 2 )2 = 0
<=> x( x - 2 )2 - ( x - 2 )2 = 0
<=> ( x - 2 )2( x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
c) x4 - 2x3 + x2 = 0
<=> x2( x2 - 2x + 1 ) = 0
<=> x2( x - 1 )2 = 0
<=> \(\orbr{\begin{cases}x^2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
d) 2x3 + x2 - 4x - 2 = 0
<=> ( 2x3 + x2 ) - ( 4x + 2 ) = 0
<=> x2( 2x + 1 ) - 2( 2x + 1 ) = 0
<=> ( 2x + 1 )( x2 - 2 ) = 0
<=> \(\orbr{\begin{cases}2x+1=0\\x^2-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\pm\sqrt{2}\end{cases}}\)
\(x^4+2x^3-2x^2+2x-3=0\)
\(\left(x^4-1\right)+\left(2x^3-2x^2\right)+\left(2x-2\right)=0\)
\(\left(x-1\right)\left(x+1\right)\left(x^2+1\right)+2x^2\left(x-1\right)+2\left(x-1\right)=0\)
\(\left(x-1\right)\left[\left(x+1\right)\left(x^2+1\right)+2x^2+2\right]=0\)
\(\left(x-1\right)\left(x^3+x+x^2+1+2x^2+2\right)=0\)
\(\left(x-1\right)\left(x^3+3x^2+x+3\right)\)
\(\left(x-1\right)=0or\left(x^3+3x^2+x+3\right)=0\)
- \(x-1=0\Leftrightarrow x=1\)
- \(x^3+3x^2+x+3=0\Leftrightarrow x\left(x^2+1\right)+3\left(x^2+1\right)=0\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\Leftrightarrow x+3=0\left(x^2+1>0\right)\Leftrightarrow x=-3\)
Ta có:
\(\frac{3x^3+x^2-13x+5}{x^2+2x-1}=0\Leftrightarrow3x^2+x^2-13x+5=0\)
\(\Leftrightarrow\left(3x-5\right)\left(x^2+2x-1\right)=0\)
Do đó:
\(3x-5=0\Leftrightarrow x=\frac{5}{3}\)
Vì \(x_0\) là giá trị của \(x\) thỏa mãn \(\frac{3x^3+x^2-13x+5}{x^2+2x-1}=0\) nên \(x_0=x=\frac{5}{3}\)
Do đó: \(3x_0=3.\frac{5}{3}=5\)
Tìm GTNN
a/ \(A=4x^2+7x+13=\left(4x^2+7x+\frac{49}{16}\right)+\frac{159}{16}=\left(2x+\frac{7}{4}\right)^2+\frac{159}{16}\ge\frac{159}{16}\)
b/ \(B=5-8x+x^2=\left(x^2-8x+16\right)-11=\left(x-4\right)^2-11\ge-11\)
c/ \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
TÌM a.