K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2020

Bài này hơi khó nên không chắc nhé bạn ==*

A D B M H N C E G

Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật

Suy ra: AH = DE ( tính chất hình chữ nhật )

Tam giác ABC vuông tại A và có AH là đường cao

Theo hệ thức giữa đường cao và hình chiếu ta có:

AH2 = HB . HC = 4 . 9 = 36 => AH = 6 ( cm )

Vậy DE = 6 ( cm )

b. *Gọi G là giao điểm của AH và DE

Ta có: GA = GD = GH = GE (tính chất hình chữ nhật)

Suy ra tam giác GHD cân tại G

Ta có : \(\widehat{GDH}=\widehat{GHD}\left(1\right)\)

           \(\widehat{GDH}+\widehat{MDH}=90^o\left(2\right)\)

           \(\widehat{GHD}+\widehat{MHD}=90^o\left(3\right)\)

Từ (1) (2) và (3) , suy ra : \(\widehat{MDH}=\widehat{MHD}\left(4\right)\)

\(\Rightarrow\Delta MDH\)cân tại M \(\Rightarrow MD=MH\left(5\right)\)

Ta lại có : \(\widehat{MDH}+\widehat{MDB}=90^o\left(6\right)\)

               \(\widehat{MBD}+\widehat{MHD}=90^o(\Delta BHD\)vuông tại D ) ( 7 )

Từ (4) (6) và (7) , suy ra : \(\widehat{MDB}=\widehat{MBD}\)

\(\Rightarrow\Delta MDH\)cân tại M \(\Rightarrow MB=MD\left(8\right)\)

Từ (5) và (8) , suy ra : \(MB=MH\)hay M là trung điểm của BH

*\(\Delta GHE\)cân tại G

Ta có : \(\widehat{GHE}=\widehat{GEH}\left(9\right)\)

           \(\widehat{GHE}+\widehat{NHE}=90^o\left(10\right)\)

           \(\widehat{GEH}+\widehat{NEH}=90^o\left(11\right)\)

Từ (9) (10) và (11) , suy ra : \(\widehat{NHE}=\widehat{NEH}\left(12\right)\)

\(\Rightarrow\Delta NEH\)cân tại N => NE = NH ( 13 )

Lại  có : \(\widehat{NEC}+\widehat{NEH}=90^o\left(14\right)\)

            \(\widehat{NHE}+\widehat{NCE}=90^o(\Delta CEH\)vuông tại E ) ( 15 )

Từ (12) (14) và (15) , suy ra : \(\widehat{NDC}=\widehat{NCE}\)

Suy ra tam giác NCE cân tại N ⇒ NC = NE     (16)

Từ (13) và (16) suy ra: NC = NH hay N là trung điểm của CH.

c. Tam giác BDH vuông tại D có DM là đường trung tuyến nên :

\(DM=\frac{1}{2}BH=\frac{1}{2}.4=2\left(cm\right)\)

\(\Delta CEH\)vuông tại E có EN là đường trung tuyến nên :

\(EN=\frac{1}{2}CH=\frac{1}{2}.9=4,5\left(cm\right)\)

Mà \(MD\perp DE\)và \(NE\perp DE\)nên MD // NE

Suy ra tứ giác DENM là hình thang

Vậy : \(S_{DENM}=\frac{DM+NE}{2}.DE=\frac{2+4,5}{2}.6=19,5\left(cm^2\right)\)

29 tháng 7 2018

A B C H I K

a)  Xét tam giác HBA và tam giác ABC có:

góc B chung

góa AHB = góc CAB = 900

suy ra:  tgiac HBA ~ tgiac ABC  (g.g)

b) Áp dụng Pytago ta có:

AB2 + AC2 = BC2  

=>  BC2 = 62 + 82 = 100

=>  BC = 10

Áp dụng hệ thức lượng ta có:

AB . AC = BC .AH

=>  6 . 8  = 10 . AH

=>  AH = 4,8

AB2 = BH . BC

=>  36 = BH . 10

=> BH = 3,6

d) Áp dụng hệ thức lượng ta có:

AI . AB = AH2;   AK . AC = AH2

suy ra:  AI.AB = AK.AC

p/s: lần sau đăng bài bạn chọn cho đúng trình độ của lớp nha, như vậy người làm sẽ chọn cách phù hợp với khối đó

20 tháng 4 2020

233rxzcr

28 tháng 3 2019

Giups tớ nhé m.n

31 tháng 1 2016

bai toan hay kho

3 tháng 6 2021

Ta thấy  SACD \(\frac{1}{2}\)SABC  vì :

- Chung chiều cao AD

- Đáy CD = \(\frac{1}{2}\)đáy CB

Diện tích tam giác ACD là:

360 : 2 = 180 ( cm2)

Xét :     SIAE \(\frac{1}{2}\)SACD vì:

- Chung chiều cao AD

- CE = \(\frac{1}{2}\)AC 

Diện tích tam giác IAE là:

180 : 2 = 90 ( cm2)

  b) ..... ( Mik có thể sẽ giải sau )

- Ko biết giải có đúng ko nữa -

~ Hok T ~